搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

II-VI族稀磁半导体微纳结构中的激子磁极化子及其发光

邹双阳 Muhammad Arshad Kamran 杨高岭 刘瑞斌 石丽洁 张用友 贾宝华 钟海政 邹炳锁

引用本文:
Citation:

II-VI族稀磁半导体微纳结构中的激子磁极化子及其发光

邹双阳, Muhammad Arshad Kamran, 杨高岭, 刘瑞斌, 石丽洁, 张用友, 贾宝华, 钟海政, 邹炳锁

Excitonic magnetic polarons and their luminescence in II-VI diluted magnetic semiconductor micro-nanostructures

Zou Shuang-Yang, Muhammad Arshad, Yang Gao-Ling, Liu Rui-Bin, Shi Li-Jie, Zhang Yong-You, Jia Bao-Hua, Zhong Hai-Zheng, Zou Bing-Suo
PDF
导出引用
  • 自旋是基本粒子(电子、光子)角动量的内在形式.固体中体现自旋特征的集体电子行为如拓扑绝缘体等是当前凝聚态物理领域关注的焦点,是基态行为.激子作为电子空穴对的激发态且寿命很短,可复合发光,它是否能体现自旋极化主导的行为?对此人们的认识远不如针对基态的电子.激子磁极化子(exciton magnetic polaron,EMP)是由磁性半导体微结构中铁磁自旋耦合态与自由激子相互作用形成的复合元激发,但其研究很有限.本文概述了我们在稀磁半导体微纳米结构中的EMP及其发光动态学光谱、自旋极化激子凝聚态的形成方面取得的一些进展,展望了未来可能在自旋光电子器件、磁控激光、光致磁性等量子技术方面的潜在应用.
    Spin is an intrinsic nature of the angular momentum of elementary particle like electron and photon. Currently the collective spin behaviors of the multi-electrons in condensed matter, such as GMR, CMR and topological insulator which are the behaviors of ground state, have been a research focus in the condensed matter physics, due to the fact that the collective spin is related to electronic transports. Exciton is another type of bosonic quasiparticle, an excited state of electronhole pair in solid, which has a short lifetime and can recombine to emit light. Whether excitons can also exhibit the spin-polarized dominance before they recombine, has not been understood yet. It is proposed that excitons form condensate by themselves or light binding. Can coupled spins conduce to the formation of the exciton condensate in solid? Excitonic magnetic polaron (EMP) is the composite exciton of ferromagnetically coupled spins and free excitons in magnetic semiconductors, which may lead to ferromagnetic Bose-Einstein condensate (BEC) due to the binding of collective spins in a microstructure, like the photon binding excitons (exciton polaritons) in an optical cavity However, this subject has not been a research focus yet. Here in this paper, we review the progress of the EMP formation, its dynamic behaviors and spin polarized collective EMP emission and lasing in Ⅱ-VI dilute magnetic semiconductor micro-structures in our group Besides, we also present some expectations for the applications or advances in the quantum phenomena such as spin-related emission and lasing, spin induced BEC, photon induced magnetism and Hall effect, etc. Even more achievements of EMP could be expected in the future.
    [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [2]

    Dietl T 2010 Nat. Mater. 9 965

    [3]

    Merkulov I A, Yakovlev D R, Keller A, Ossau W, Geurts J, Waag A, Landwehr G, Karczewski G, Wojtowicz T, Kossut J 1999 Phys. Rev. Lett. 83 1431

    [4]

    Bhattacharjee A K, Benoit Guillaume C 1997 Phys. Rev. B: Condens. Matter 55 10613

    [5]

    Norberg N S, Parks G L, Salley G M, Gamelin D R 2006 J. Am. Chem. Soc. 128 13195

    [6]

    Beaulac R, Schneider L, Archer P I, Bacher G, Gamelin D R 2009 Science 325 973

    [7]

    Schwartz D A, Norberg N S, Nguyen Q P, Parker J M, Gamelin D R 2003 J. Am. Chem. Soc. 125 13205

    [8]

    Bhattacharjee A K 2007 Phys. Rev B: Condens. Matter 76 075305

    [9]

    Kavokin A, Gil B, Bigenwald P 1998 Phys. Rev. B: Condens. Matter 57 4261

    [10]

    Eisenstein J P, MacDonald A H 2004 Nature 432 691

    [11]

    Su, J J, MacDonald A H 2008 Nature Phys. 4 799

    [12]

    Kłopotowski Ł, Cywiński Ł, Wojnar P, Voliotis V, Fronc K, Kazimierczuk T, Golnik A, Ravaro M, Grousson R, Karczewski G, Wojtowicz T 2011 Phys. Rev. B: Condens. Matter 83 081306

    [13]

    Mackh G, Ossau W, Yakovlev D R, Waag A, Landwehr G, Hellmann R, Göbel E O 1994 Phys. Rev. B: Condens. Matter 49 10248

    [14]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [15]

    Raebiger H, Lany S, Zunger A 2007 Phys. Rev. Lett. 99 167203

    [16]

    Ivanov V A, Pashkova O N, Ugolkova E A, Sanygin V P, Galéra R M 2008 Inorg. Mater. 44 1041

    [17]

    Zou B S, Liu R B, Wang F F, Pan A L, Cao L, Wang Z L 2006 J. Phys. Chem. B 110 12865

    [18]

    Bulakh B, Khomenkova L, Kushnirenko V, Markevich I 2004 Europ. Phys. J.: Appl. Phys. 27 305

    [19]

    Schmitt-Rink S, Chemla D S, Miller D A B 1989 Adv. Phys. 38 89

    [20]

    Johnson J C, Yan H, Yang P, Saykally R J 2003 J. Phys. Chem. B 107 8816

    [21]

    Johnson J C, Knutsen K P, Yan H, Law M, Zhang Y, Yang P, Saykally R J 2004 Nano Lett. 4 197

    [22]

    Klingshirn C 1992 J. Cryst. Growth 117 753

    [23]

    Griffin A, Snoke D W, Stringari S 1996 Bose-Einstein Condensation (Cambridge: Cambridge University Press)

    [24]

    Godde T, Reshina I I, Ivanov S V, Akimov I A, Yakovlev D R, Bayer M 2010 Phys. Status Solidi (b) 247 1508

    [25]

    Wang R P, Xu G, Jin P 2004 Phys. Rev. B: Condens. Matter 69 113303

    [26]

    Liu R, Shi L, Zou B 2014 ACS Appl. Mat. Interf. 6 10353

    [27]

    Rashba E, Sturge M 1982 Excitons (North Holland: Amsterdam)

    [28]

    Liu R B, Zou B S 2011 Chin. Phys. B 20 47104

    [29]

    Pokatilov E P, Fomin V M, Devreese J T, Balaban S N, Klimin S N 2000 Phys. Rev. B: Condens. Matter 61 2721

    [30]

    Butov L V, Lai C W, Ivanov A L, Gossard A C, Chemla D S 2002 Nature 417 47

    [31]

    Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y 1998 Appl. Phys. Lett. 72 3270

    [32]

    Cao L, Miao Y, Zhang Z, Xie S S, Yang G Z, Zou B S 2005 J. Chem. Phys. 123 024702

    [33]

    Lövenich R, Schäfer W, Kner P, Chemla D S 1997 Physica Status Solidi (a) 164 347

    [34]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [35]

    Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B, Gehring G A 2003 Nat. Mater. 2 673

    [36]

    Jin Z W, Yoo Y Z, Sekiguchi T, Chikyow T, Ofuchi H, Fujioka H, Oshima M, Koinuma H 2003 Appl. Phys. Lett. 83 39

    [37]

    Norberg N S, Kittilstved K R, Amonette J E, Kukkadapu R K, Schwartz D A, Gamelin D R 2004 J. Am. Chem. Soc. 126 9387

    [38]

    Furdyna J K 1988 J. Appl. Phys. 64 R29

    [39]

    Takahashi M 2004 Phys. Rev. B: Condens. Matter 70 035207

    [40]

    Mizokawa T, Nambu T, Fujimori A, Fukumura T, Kawasaki M 2002 Phys. Rev. B: Condens. Matter 65 085209

    [41]

    Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B, Slavin A N 2006 Nature 443 430

    [42]

    Maksimov A A, Bacher G, McDonald A, Kulakovskii V D, Forchel A, Becker C R, Landwehr G, Molenkamp L W 2000 Phys. Rev. B: Condens. Matter 62 R7767

    [43]

    Seufert J, Bacher G, Scheibner M, Forchel A, Lee S, Dobrowolska M, Furdyna J K 2001 Phys. Rev. Lett. 88 027402

    [44]

    Sun L, Chen Z, Ren Q, Yu K, Bai L, Zhou W, Xiong H, Zhu Z Q, Shen X 2008 Phys. Rev. Lett. 100 156403

    [45]

    Xie W, Dong H, Zhang S, Sun L, Zhou W, Ling Y, Lu J, Shen X, Chen Z 2012 Phys. Rev. Lett. 108 166401

    [46]

    Liu R, Pan A, Fan H, Wang F, Shen Z, Yang G, Xie S, Zou B 2007 J. Phys.: Condens. Matter 19 136206

    [47]

    Leung Y H, Kwok W M, Djurišić A B, Phillips D L, Chan W K 2005 Nanotechnology 16 579

    [48]

    Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov G V, Hänsch T W, Bloch I 2004 Nature 429 277

    [49]

    Kinoshita T, Wenger T, Weiss D S 2004 Science 305 1125

    [50]

    Eisenstein J P, MacDonald A H 2004 Nature 432 691

    [51]

    Kamran M A, Liu R, Shi L, Li Z, Marzi T, Schöppner C, Farle M, Zou B S 2014 Nanotechnology 25 385201

    [52]

    Kamran M A, Liu R, Shi L, Zou B S, Zhang Q 2013 J. Phys. Chem. C 117 17777

    [53]

    Zuo T, Sun Z, Zhao Y, Jiang X, Gao X 2010 J. Am. Chem. Soc. 132 6618

    [54]

    Pradhan N, Peng X 2007 J. Am. Chem. Soc. 129 3339

    [55]

    Hazarika A, Layek A, De S, Nag A, Debnath S, Mahadevan P, Chowdhury A, Sarma D D 2013 Phys. Rev. Lett. 110 267401

    [56]

    Erwin S C, Zu L J, Haftel M I, Efros A L, Kennedy T A, Norris D J 2005 Nature 436 91

    [57]

    Yang G, Xu G, Chen B, Zou S, Liu R, Zhong H, Zou B 2013 Chem. Mater. 25 3260

    [58]

    Bhattacharyya S, Estrin Y, Rich D H, Zitoun D, Koltypin Y, Gedanken A 2010 J. Phys. Chem. C 114 22002

    [59]

    Gumlich H E, Moser R, Neumann E 1967 Phys. Status Solidi (b) 24 K13

    [60]

    Nag A, Cherian R, Mahadevan P, Gopal A V, Hazarika A, Mohan A, Vengurlekar A S, Sarma D D 2010 J. Phys. Chem. C 114 18323

    [61]

    Cui X Y, Delley B, Freeman A J, Stampfl C 2007 Phys. Rev. B: Condens. Matter 76 045201

    [62]

    Durst A C, Bhatt R N, Wolff P A 2002 Phys. Rev. B: Condens. Matter 65 235205

    [63]

    Wojtowicz T, Koleśnik S, Miotkowski I, Furdyna J K 1993 Phys. Rev. Lett. 70 2317

    [64]

    Beaulac R, Feng Y, May J W, Badaeva E, Gamelin D R, Li X 2011 Phys. Rev. B: Condens. Matter 84 195324

    [65]

    Delikanli S, He S, Qin Y, Zhang P, Zeng H, Zhang H, Swihart M 2008 Appl. Phys. Lett. 93 132501

    [66]

    Kisliuk P, Chang N C, Scott P L, Pryce M H L 1969 Phys. Rev. 184 367

    [67]

    Spano F C, Silva C 2014 Annu. Rev. Phys. Chem. 65 477

    [68]

    Muhammad A K, Zhang Y Y, Liu R B, Shi L J, Zou B S 2014 Chin. Phys. Lett. 31 067802

    [69]

    Zou S, Kamran M A, Shi L J, Liu R B, Guo S, Kavokin A, Zou B S 2016 ACS Photon. 3 1809

    [70]

    Bonanni A, Navarro-Quezada A, Li T, Wegscheider M, Matěj Z, Holy V, Lechner R T, Bauer G, Rovezzi M, D'Acapito F, Kiecana M, Sawicki M, Dietl T 2008 Phys. Rev. Lett. 101 135502

    [71]

    Zhang Y B, Assadi M H N, Li S 2009 J. Phys.: Condens. Matter 21 175802

    [72]

    Oka Y, Shen J, Takabayashi K, Takahashi N, Mitsu H, Souma I, Pittini R 1999 J. Lumin. 83 83

    [73]

    Godlewski M, Yatsunenko S, Khachapuridze A, Ivanov V Y, Gołacki Z, Karczewski G, Bergman P J, Klar P J, Heimbrodt W, Phillips M R 2004 J. Alloy. Compd. 380 45

    [74]

    Chang K, Peeters F M 2003 Phys. Rev. B: Condens. Matter 68 205320

    [75]

    Katayama K, Miyajima K, Ashida M, Itoh T 2012 J. Phys.: Condens. Matter 24 325801

    [76]

    Dey A, Yarlagadda S 2014 Phys. Rev. B: Condens. Matter 89 064311

    [77]

    Butov L V, Filin A I 1998 Phys. Rev. B: Condens. Matter 58 1980

    [78]

    Snoke D W 2011 Adv. Condens. Matter Phys. 2011 938609

    [79]

    Moskalenko S A, Liberman M A, Dumanov E V 2011 J. Nanoelectron. Optoelectron. 6 393

    [80]

    Hague J P, Kornilovitch P E 2010 Phys. Rev. B: Condens. Matter 82 094301

    [81]

    Hague J P, Kornilovitch P E, Samson J H, Alexandrov A S 2007 Phys. Rev. Lett. 98 037002

    [82]

    Voigt J, Spiegelberg F, Senoner M 1979 Phys. Status Solidi 91 189

    [83]

    Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D N, Khajavikhan M 2018 Science 359 4005

    [84]

    Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V 2015 Nature Photon. 9 796

  • [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [2]

    Dietl T 2010 Nat. Mater. 9 965

    [3]

    Merkulov I A, Yakovlev D R, Keller A, Ossau W, Geurts J, Waag A, Landwehr G, Karczewski G, Wojtowicz T, Kossut J 1999 Phys. Rev. Lett. 83 1431

    [4]

    Bhattacharjee A K, Benoit Guillaume C 1997 Phys. Rev. B: Condens. Matter 55 10613

    [5]

    Norberg N S, Parks G L, Salley G M, Gamelin D R 2006 J. Am. Chem. Soc. 128 13195

    [6]

    Beaulac R, Schneider L, Archer P I, Bacher G, Gamelin D R 2009 Science 325 973

    [7]

    Schwartz D A, Norberg N S, Nguyen Q P, Parker J M, Gamelin D R 2003 J. Am. Chem. Soc. 125 13205

    [8]

    Bhattacharjee A K 2007 Phys. Rev B: Condens. Matter 76 075305

    [9]

    Kavokin A, Gil B, Bigenwald P 1998 Phys. Rev. B: Condens. Matter 57 4261

    [10]

    Eisenstein J P, MacDonald A H 2004 Nature 432 691

    [11]

    Su, J J, MacDonald A H 2008 Nature Phys. 4 799

    [12]

    Kłopotowski Ł, Cywiński Ł, Wojnar P, Voliotis V, Fronc K, Kazimierczuk T, Golnik A, Ravaro M, Grousson R, Karczewski G, Wojtowicz T 2011 Phys. Rev. B: Condens. Matter 83 081306

    [13]

    Mackh G, Ossau W, Yakovlev D R, Waag A, Landwehr G, Hellmann R, Göbel E O 1994 Phys. Rev. B: Condens. Matter 49 10248

    [14]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [15]

    Raebiger H, Lany S, Zunger A 2007 Phys. Rev. Lett. 99 167203

    [16]

    Ivanov V A, Pashkova O N, Ugolkova E A, Sanygin V P, Galéra R M 2008 Inorg. Mater. 44 1041

    [17]

    Zou B S, Liu R B, Wang F F, Pan A L, Cao L, Wang Z L 2006 J. Phys. Chem. B 110 12865

    [18]

    Bulakh B, Khomenkova L, Kushnirenko V, Markevich I 2004 Europ. Phys. J.: Appl. Phys. 27 305

    [19]

    Schmitt-Rink S, Chemla D S, Miller D A B 1989 Adv. Phys. 38 89

    [20]

    Johnson J C, Yan H, Yang P, Saykally R J 2003 J. Phys. Chem. B 107 8816

    [21]

    Johnson J C, Knutsen K P, Yan H, Law M, Zhang Y, Yang P, Saykally R J 2004 Nano Lett. 4 197

    [22]

    Klingshirn C 1992 J. Cryst. Growth 117 753

    [23]

    Griffin A, Snoke D W, Stringari S 1996 Bose-Einstein Condensation (Cambridge: Cambridge University Press)

    [24]

    Godde T, Reshina I I, Ivanov S V, Akimov I A, Yakovlev D R, Bayer M 2010 Phys. Status Solidi (b) 247 1508

    [25]

    Wang R P, Xu G, Jin P 2004 Phys. Rev. B: Condens. Matter 69 113303

    [26]

    Liu R, Shi L, Zou B 2014 ACS Appl. Mat. Interf. 6 10353

    [27]

    Rashba E, Sturge M 1982 Excitons (North Holland: Amsterdam)

    [28]

    Liu R B, Zou B S 2011 Chin. Phys. B 20 47104

    [29]

    Pokatilov E P, Fomin V M, Devreese J T, Balaban S N, Klimin S N 2000 Phys. Rev. B: Condens. Matter 61 2721

    [30]

    Butov L V, Lai C W, Ivanov A L, Gossard A C, Chemla D S 2002 Nature 417 47

    [31]

    Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y 1998 Appl. Phys. Lett. 72 3270

    [32]

    Cao L, Miao Y, Zhang Z, Xie S S, Yang G Z, Zou B S 2005 J. Chem. Phys. 123 024702

    [33]

    Lövenich R, Schäfer W, Kner P, Chemla D S 1997 Physica Status Solidi (a) 164 347

    [34]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [35]

    Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B, Gehring G A 2003 Nat. Mater. 2 673

    [36]

    Jin Z W, Yoo Y Z, Sekiguchi T, Chikyow T, Ofuchi H, Fujioka H, Oshima M, Koinuma H 2003 Appl. Phys. Lett. 83 39

    [37]

    Norberg N S, Kittilstved K R, Amonette J E, Kukkadapu R K, Schwartz D A, Gamelin D R 2004 J. Am. Chem. Soc. 126 9387

    [38]

    Furdyna J K 1988 J. Appl. Phys. 64 R29

    [39]

    Takahashi M 2004 Phys. Rev. B: Condens. Matter 70 035207

    [40]

    Mizokawa T, Nambu T, Fujimori A, Fukumura T, Kawasaki M 2002 Phys. Rev. B: Condens. Matter 65 085209

    [41]

    Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B, Slavin A N 2006 Nature 443 430

    [42]

    Maksimov A A, Bacher G, McDonald A, Kulakovskii V D, Forchel A, Becker C R, Landwehr G, Molenkamp L W 2000 Phys. Rev. B: Condens. Matter 62 R7767

    [43]

    Seufert J, Bacher G, Scheibner M, Forchel A, Lee S, Dobrowolska M, Furdyna J K 2001 Phys. Rev. Lett. 88 027402

    [44]

    Sun L, Chen Z, Ren Q, Yu K, Bai L, Zhou W, Xiong H, Zhu Z Q, Shen X 2008 Phys. Rev. Lett. 100 156403

    [45]

    Xie W, Dong H, Zhang S, Sun L, Zhou W, Ling Y, Lu J, Shen X, Chen Z 2012 Phys. Rev. Lett. 108 166401

    [46]

    Liu R, Pan A, Fan H, Wang F, Shen Z, Yang G, Xie S, Zou B 2007 J. Phys.: Condens. Matter 19 136206

    [47]

    Leung Y H, Kwok W M, Djurišić A B, Phillips D L, Chan W K 2005 Nanotechnology 16 579

    [48]

    Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov G V, Hänsch T W, Bloch I 2004 Nature 429 277

    [49]

    Kinoshita T, Wenger T, Weiss D S 2004 Science 305 1125

    [50]

    Eisenstein J P, MacDonald A H 2004 Nature 432 691

    [51]

    Kamran M A, Liu R, Shi L, Li Z, Marzi T, Schöppner C, Farle M, Zou B S 2014 Nanotechnology 25 385201

    [52]

    Kamran M A, Liu R, Shi L, Zou B S, Zhang Q 2013 J. Phys. Chem. C 117 17777

    [53]

    Zuo T, Sun Z, Zhao Y, Jiang X, Gao X 2010 J. Am. Chem. Soc. 132 6618

    [54]

    Pradhan N, Peng X 2007 J. Am. Chem. Soc. 129 3339

    [55]

    Hazarika A, Layek A, De S, Nag A, Debnath S, Mahadevan P, Chowdhury A, Sarma D D 2013 Phys. Rev. Lett. 110 267401

    [56]

    Erwin S C, Zu L J, Haftel M I, Efros A L, Kennedy T A, Norris D J 2005 Nature 436 91

    [57]

    Yang G, Xu G, Chen B, Zou S, Liu R, Zhong H, Zou B 2013 Chem. Mater. 25 3260

    [58]

    Bhattacharyya S, Estrin Y, Rich D H, Zitoun D, Koltypin Y, Gedanken A 2010 J. Phys. Chem. C 114 22002

    [59]

    Gumlich H E, Moser R, Neumann E 1967 Phys. Status Solidi (b) 24 K13

    [60]

    Nag A, Cherian R, Mahadevan P, Gopal A V, Hazarika A, Mohan A, Vengurlekar A S, Sarma D D 2010 J. Phys. Chem. C 114 18323

    [61]

    Cui X Y, Delley B, Freeman A J, Stampfl C 2007 Phys. Rev. B: Condens. Matter 76 045201

    [62]

    Durst A C, Bhatt R N, Wolff P A 2002 Phys. Rev. B: Condens. Matter 65 235205

    [63]

    Wojtowicz T, Koleśnik S, Miotkowski I, Furdyna J K 1993 Phys. Rev. Lett. 70 2317

    [64]

    Beaulac R, Feng Y, May J W, Badaeva E, Gamelin D R, Li X 2011 Phys. Rev. B: Condens. Matter 84 195324

    [65]

    Delikanli S, He S, Qin Y, Zhang P, Zeng H, Zhang H, Swihart M 2008 Appl. Phys. Lett. 93 132501

    [66]

    Kisliuk P, Chang N C, Scott P L, Pryce M H L 1969 Phys. Rev. 184 367

    [67]

    Spano F C, Silva C 2014 Annu. Rev. Phys. Chem. 65 477

    [68]

    Muhammad A K, Zhang Y Y, Liu R B, Shi L J, Zou B S 2014 Chin. Phys. Lett. 31 067802

    [69]

    Zou S, Kamran M A, Shi L J, Liu R B, Guo S, Kavokin A, Zou B S 2016 ACS Photon. 3 1809

    [70]

    Bonanni A, Navarro-Quezada A, Li T, Wegscheider M, Matěj Z, Holy V, Lechner R T, Bauer G, Rovezzi M, D'Acapito F, Kiecana M, Sawicki M, Dietl T 2008 Phys. Rev. Lett. 101 135502

    [71]

    Zhang Y B, Assadi M H N, Li S 2009 J. Phys.: Condens. Matter 21 175802

    [72]

    Oka Y, Shen J, Takabayashi K, Takahashi N, Mitsu H, Souma I, Pittini R 1999 J. Lumin. 83 83

    [73]

    Godlewski M, Yatsunenko S, Khachapuridze A, Ivanov V Y, Gołacki Z, Karczewski G, Bergman P J, Klar P J, Heimbrodt W, Phillips M R 2004 J. Alloy. Compd. 380 45

    [74]

    Chang K, Peeters F M 2003 Phys. Rev. B: Condens. Matter 68 205320

    [75]

    Katayama K, Miyajima K, Ashida M, Itoh T 2012 J. Phys.: Condens. Matter 24 325801

    [76]

    Dey A, Yarlagadda S 2014 Phys. Rev. B: Condens. Matter 89 064311

    [77]

    Butov L V, Filin A I 1998 Phys. Rev. B: Condens. Matter 58 1980

    [78]

    Snoke D W 2011 Adv. Condens. Matter Phys. 2011 938609

    [79]

    Moskalenko S A, Liberman M A, Dumanov E V 2011 J. Nanoelectron. Optoelectron. 6 393

    [80]

    Hague J P, Kornilovitch P E 2010 Phys. Rev. B: Condens. Matter 82 094301

    [81]

    Hague J P, Kornilovitch P E, Samson J H, Alexandrov A S 2007 Phys. Rev. Lett. 98 037002

    [82]

    Voigt J, Spiegelberg F, Senoner M 1979 Phys. Status Solidi 91 189

    [83]

    Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D N, Khajavikhan M 2018 Science 359 4005

    [84]

    Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V 2015 Nature Photon. 9 796

  • [1] 刘海洋, 范晓跃, 范豪杰, 李阳阳, 唐天鸿, 王刚. 等离子体轰击单层WS2引入缺陷态对束缚激子光学性质的影响. 物理学报, 2024, 73(13): 137802. doi: 10.7498/aps.73.20240475
    [2] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [3] 胡倩颖, 许杨. 二维半导体材料中激子对介电屏蔽效应的探测及其应用. 物理学报, 2022, 71(12): 127102. doi: 10.7498/aps.71.20220054
    [4] 王文娟, 王海龙, 龚谦, 宋志棠, 汪辉, 封松林. 外电场对InGaAsP/InP量子阱内激子结合能的影响. 物理学报, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [5] 李文生, 孙宝权. 电场调谐InAs量子点荷电激子光学跃迁. 物理学报, 2013, 62(4): 047801. doi: 10.7498/aps.62.047801
    [6] 王艳文, 吴花蕊. 闪锌矿GaN/AlGaN量子点中激子态及光学性质的研究. 物理学报, 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [7] 沈曼, 张亮, 刘建军. 磁场和量子点尺寸对激子性质的影响. 物理学报, 2012, 61(21): 217103. doi: 10.7498/aps.61.217103
    [8] 邓艳平, 吕彬彬, 田强. 非对称方势阱中的激子及其与声子的相互作用. 物理学报, 2010, 59(7): 4961-4966. doi: 10.7498/aps.59.4961
    [9] 孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰. 高聚物中极化子和三重态激子的碰撞过程研究. 物理学报, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [10] 金 华, 刘 舒, 张振中, 张立功, 郑著宏, 申德振. (CdZnTe, ZnSeTe)/ZnTe复合量子阱中激子隧穿过程. 物理学报, 2008, 57(10): 6627-6630. doi: 10.7498/aps.57.6627
    [11] 张 红, 刘 磊, 刘建军. 对称GaAs/Al0.3Ga0.7As双量子阱中激子的束缚能. 物理学报, 2007, 56(1): 487-490. doi: 10.7498/aps.56.487
    [12] 熊 稳, 赵 铧. ZnO薄膜的激子能量和束缚能的计算. 物理学报, 2007, 56(2): 1061-1065. doi: 10.7498/aps.56.1061
    [13] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布. 物理学报, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [14] 王防震, 陈张海, 柳 毅, 黄少华, 柏利慧, 沈学础. CdSe/ZnSe超薄层中两类量子岛(点)之间的激子转移和它们的光学性质研究. 物理学报, 2005, 54(1): 434-438. doi: 10.7498/aps.54.434
    [15] 董庆瑞, 牛智川. 垂直耦合自组织InAs双量子点中激子能的计算. 物理学报, 2005, 54(4): 1794-1798. doi: 10.7498/aps.54.1794
    [16] 金 华, 张立功, 郑著宏, 孔祥贵, 安立楠, 申德振. ZnCdSe量子阱/CdSe量子点耦合结构中的激子隧穿过程. 物理学报, 2004, 53(9): 3211-3214. doi: 10.7498/aps.53.3211
    [17] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [18] 张树东, 李海洋. 激光烧蚀Al热原子与CF4反应中C2的形成及其发光光谱研究. 物理学报, 2003, 52(5): 1297-1301. doi: 10.7498/aps.52.1297
    [19] 刘文楷, 林世鸣, 张存善. 半导体微腔中腔模、重空穴激子模和轻空穴激子模耦合. 物理学报, 2002, 51(9): 2052-2056. doi: 10.7498/aps.51.2052
    [20] 陈 科, 赵二海, 孙 鑫, 付柔励. 高分子中激子和双激子的极化率(解析计算). 物理学报, 2000, 49(9): 1778-1785. doi: 10.7498/aps.49.1778
计量
  • 文章访问数:  8133
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-22
  • 修回日期:  2018-09-25
  • 刊出日期:  2019-01-05

/

返回文章
返回