-
利用阳光直接将水分解为不含碳的氢气燃料和氧气是面向全球能源危机环保且低成本的解决方案.得益于电子结构理论和量子模拟方法的进步,人们已经能够直接研究在纳米颗粒上等离激元诱导光解水过程在原子尺度上的反应机理和超快动力学.本文简述近年来的相关工作进展.吸附在氧化物薄膜上的金纳米颗粒很有希望成为水分解的高效新型光催化剂.在光激发条件下,水分解反应速率和光强、热电子转移之间有强相关性.水分解速率不仅取决于光吸收强度,还受到等离激元量子振动模式的调控.这对于太阳能光解水器件中纳米颗粒的设计有借鉴意义.我们发现液态水在金团簇等离激元催化下100 fs内就能产生氢气.超快量子动力学模拟表明,该过程中场增强起主导作用,从金属到水反键态的超快电荷转移也扮演着重要角色.综合这些原子尺度上的量子动力学研究,我们提出受激水分子中氢原子高速碰撞(速度远远超出其热速度)合成氢分子的“链式反应”机理.Directly splitting water into carbon-free H2 fuel and O2 gases by sunlight is one of the most environmentally-friendly and potentially low cost approaches to solving the grand global energy challenge. Recent progress of electronic structure theory and quantum simulations allow us to directly explore the atomistic mechanism and ultrafast dynamics of water photosplitting on plasmonic nanoparticles. Here in this paper, we briefly introduce the relevant researches in our group. First we propose that the supported gold nanoparticles on oxide thin film/mental should be able to potentially serve as efficient photocatalysts for water splitting. Then, under the light illumination, we identify a strong correlation among light intensity, hot electron transfer rate, and water splitting reaction rate. The rate of water splitting is dependent not only on respective optical absorption strength, but also on the quantum oscillation mode of plasmonic excitation, which can help to design nanoparticles in water photosplitting cells. Finally, we simulate the ultrafast electron-nuclear quantum dynamics of H2 generation with plasmonic gold cluster on a time scale of~100 fs in liquid water. We identify that the water splitting is dominated by field enhancement effect and associated with charge transfer from gold to antibonding orbital of water molecule. Based on all atomistic mechanism and quantum dynamics above, we present a “chain-reaction” H2 production mechanism via high-speed (much higher than their thermal velocity) collision of two hydrogen atoms from different water molecules under light illumination.
-
Keywords:
- water photosplitting /
- gold nanoparticles /
- quantum selectivity /
- quantum dynamics
[1] Linic S, Christopher P, Ingram D B 2011 Nat. Publ. Gr. 10 911
[2] Mukherjee S, Zhou L, Goodman A M, Large N, Ayala-Orozco C, Zhang Y, Nordlander P, Halas N J 2013 J. Am. Chem. Soc. 136 64
[3] Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253
[4] Li X, Xiao D, Zhang Z 2013 New J. Phys. 15 23011
[5] Ager J W, Shaner M R, Walczak K A, Sharp I D, Ardo S 2015 Energy Environ. Sci. 8 2811
[6] Robatjazi H, Bahauddin S M, Doiron C, Thomann I 2015 Nano Lett. 15 6155
[7] Cottancin E, Celep G, Lermé J, Pellarin M, Huntzinger J R, Vialle J L, Broyer M 2006 Theor. Chem. Acc. 116 514
[8] Murray W A, Barnes W L 2007 Adv. Mater. 19 3771
[9] Awate S V, Deshpande S S, Rakesh K, Dhanasekaran P, Gupta N M 2011 Phys. Chem. Chem. Phys. 13 11329
[10] Liu Z, Hou W, Pavaskar P, Aykol M, Cronin S B 2011 Nano Lett. 11 1111
[11] Li J, Li X, Zhai H J, Wang L S 2003 Science 299 864
[12] Lin X, Nilius N, Freund H J, Walter M, Frondelius P, Honkala K, Hakkinen H 2009 Phys. Rev. Lett. 102 206801
[13] Ding Z, Gao S, Meng S 2015 New J. Phys. 17 13023
[14] Meng S, Wang E G, Gao S 2004 Phys. Rev. B 69 195404
[15] Ding Z, Yan L, Li Z, Ma W, Lu G, Meng S 2017 Phys. Rev. Mater. 1 45404
[16] Shin H J, Jung J, Motobayashi K, Yanagisawa S, Morikawa Y, Kim Y, Kawai M 2010 Nat. Mater. 9 442
[17] Jung J, Shin H J, Kim Y, Kawai M 2010 Phys. Rev. B 82 85413
[18] Hu X L, Klimeš J, Michaelides A 2010 Phys. Chem. Chem. Phys. 12 3953
[19] Yan L, Wang F, Meng S 2016 ACS Nano 10 5452
[20] Zheng J, Zhang C, Dickson R M 2004 Phys. Rev. Lett. 93 77402
[21] Zhao L, Jensen L, Schatz G C 2006 J. Am. Chem. Soc. 128 2911
[22] Christopher P, Xin H, Marimuthu A, Linic S 2012 Nat. Mater. 11 1044
[23] Shi Y, Wang J, Wang C, Zhai T T, Bao W J, Xu J J, Xia X H, Chen H Y 2015 J. Am. Chem. Soc. 137 7365
[24] Ingram D B, Linic S 2011 J. Am. Chem. Soc. 133 5202
[25] Yan L, Xu J, Wang F, Meng S 2017 J. Phys. Chem. Lett. 9 63
-
[1] Linic S, Christopher P, Ingram D B 2011 Nat. Publ. Gr. 10 911
[2] Mukherjee S, Zhou L, Goodman A M, Large N, Ayala-Orozco C, Zhang Y, Nordlander P, Halas N J 2013 J. Am. Chem. Soc. 136 64
[3] Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253
[4] Li X, Xiao D, Zhang Z 2013 New J. Phys. 15 23011
[5] Ager J W, Shaner M R, Walczak K A, Sharp I D, Ardo S 2015 Energy Environ. Sci. 8 2811
[6] Robatjazi H, Bahauddin S M, Doiron C, Thomann I 2015 Nano Lett. 15 6155
[7] Cottancin E, Celep G, Lermé J, Pellarin M, Huntzinger J R, Vialle J L, Broyer M 2006 Theor. Chem. Acc. 116 514
[8] Murray W A, Barnes W L 2007 Adv. Mater. 19 3771
[9] Awate S V, Deshpande S S, Rakesh K, Dhanasekaran P, Gupta N M 2011 Phys. Chem. Chem. Phys. 13 11329
[10] Liu Z, Hou W, Pavaskar P, Aykol M, Cronin S B 2011 Nano Lett. 11 1111
[11] Li J, Li X, Zhai H J, Wang L S 2003 Science 299 864
[12] Lin X, Nilius N, Freund H J, Walter M, Frondelius P, Honkala K, Hakkinen H 2009 Phys. Rev. Lett. 102 206801
[13] Ding Z, Gao S, Meng S 2015 New J. Phys. 17 13023
[14] Meng S, Wang E G, Gao S 2004 Phys. Rev. B 69 195404
[15] Ding Z, Yan L, Li Z, Ma W, Lu G, Meng S 2017 Phys. Rev. Mater. 1 45404
[16] Shin H J, Jung J, Motobayashi K, Yanagisawa S, Morikawa Y, Kim Y, Kawai M 2010 Nat. Mater. 9 442
[17] Jung J, Shin H J, Kim Y, Kawai M 2010 Phys. Rev. B 82 85413
[18] Hu X L, Klimeš J, Michaelides A 2010 Phys. Chem. Chem. Phys. 12 3953
[19] Yan L, Wang F, Meng S 2016 ACS Nano 10 5452
[20] Zheng J, Zhang C, Dickson R M 2004 Phys. Rev. Lett. 93 77402
[21] Zhao L, Jensen L, Schatz G C 2006 J. Am. Chem. Soc. 128 2911
[22] Christopher P, Xin H, Marimuthu A, Linic S 2012 Nat. Mater. 11 1044
[23] Shi Y, Wang J, Wang C, Zhai T T, Bao W J, Xu J J, Xia X H, Chen H Y 2015 J. Am. Chem. Soc. 137 7365
[24] Ingram D B, Linic S 2011 J. Am. Chem. Soc. 133 5202
[25] Yan L, Xu J, Wang F, Meng S 2017 J. Phys. Chem. Lett. 9 63
计量
- 文章访问数: 7861
- PDF下载量: 167
- 被引次数: 0