搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金纳米颗粒光散射提高InAs单量子点荧光提取效率

苏丹 窦秀明 丁琨 王海艳 倪海桥 牛智川 孙宝权

引用本文:
Citation:

金纳米颗粒光散射提高InAs单量子点荧光提取效率

苏丹, 窦秀明, 丁琨, 王海艳, 倪海桥, 牛智川, 孙宝权

Extraction efficiency enhancement of single InAs quantum dot emission through light scattering on the Au nanoparticles

Su Dan, Dou Xiu-Ming, Ding Kun, Wang Hai-Yan, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan
PDF
导出引用
  • 采用光学方法确定InAs/GaAs单量子点在样品外延面上的位置坐标, 利用AlAs牺牲层把含有量子点的GaAs层剥离并放置在含有金纳米颗粒或平整金膜上, 研究量子点周围环境不同对量子点自发辐射寿命及发光提取效率的影响. 实验结果显示, 剥离前后量子点发光寿命的变化小于13%, 含有金纳米颗粒的量子点发光强度是剥离前的7倍, 含有金属薄膜的量子点发光强度是剥离前的2倍. 分析表明在金纳米颗粒膜上的量子点荧光强度的增加主要来自于金纳米颗粒对量子点荧光的散射效应, 从而提高量子点发光的提取效率.
    Single semiconductor quantum dots (QDs) have been considered as the promising solid-state single photon sources. To obtain bright quantum sources, the key issue is to enhance extraction efficiency of the QD emission, which is challenging since QDs normally emit isotropically in a high refractive index material. In this article, we investigate the influence of Au nanoparticles on the QD photoluminescence (PL) extraction efficiency based on the techniques of optically positioned QDs and single QD emission detection. The InAs QD samples studied are grown using the molecular beam epitaxy on a (001) GaAs substrate. The sample consists of, in sequence, a 200 nm GaAs buffer layer, a 100 nm AlAs sacrificed layer, a 30 nm GaAs, a QD layer, and a 100 nm GaAs cap layer. The QD sample is mounted in a cryostat cooled down to 5 K, and excited by illumination of a 640 nm diode laser (CW or pulsed with a repetition frequency of 80 MHz). Excitation laser beam is focused to an approximately 2 μm spot on the sample using a microscope objective (NA : 0.5) which is mounted on a nanocube XYZ piezo nanopositioning stage with a scanning range of 100×100×100 μm3. The QD PL is collected using the same objective and measured using a 0.5 m focal length monochromator equipped with a silicon charge-coupled device (CCD). The PL decay measurements are performed using a silicon avalanche photodiode (APD) and a time-correlated single-photon counting (TCSPC) board.#br#In order to study the influence of different environments surrounding the QDs on the spontaneous emission rate and the extraction efficiency, the same QD emissions are measured under the conditions that: (1) A typical QD is at first chosen and optically positioned and then its emission is measured. (2) A GaAs layer containing the QDs is lifted off from the as-grown sample by an AlAs sacrificed layer and placed on the Au film with or without Au nanoparticles. (3) Optical measurements are carried out to obtain the QD emission intensity. This technique enables us to compare the same QD emission intensity for the as-grown QD sample, which is placed on the Au film or on the Au nanoparticles.#br#In summary, it is found that the measured QD emission intensity increases up to 6 times that of the original for the QD placed on the Au nanoparticles, otherwise it is only doubled for the QD placed on the Au film. The time-resolved PL measurements show that the QDs have nearly the same decay time for the QDs in different environments, implying that the QD spontaneous emission rate has not been changed. Therefore, the enhanced PL is due to the increase of extraction efficiency. The physical mechanism underlying the Au nanoparticles-induced PL enhancement is attributed to the trapped QD emission light within the sample and scattered again by Au nanoparticles and collected by the microscopy objective.
      通信作者: 孙宝权, bqsun@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11204297)资助的课题.
      Corresponding author: Sun Bao-Quan, bqsun@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grand No. 11204297)
    [1]

    Chang J, Kuga Y, Mora-Seró I, Toyoda T, Ogomi Y, Hayase S, Bisquert J, Shen Q 2015 Nanoscale 7 5446

    [2]

    Luther J M, Gao J B, Lloyd M T, Semonin O E, Beard M C, Nozik A J 2010 Adv. Mater. 22 3704

    [3]

    Wang H, Xu L, Zhang R, Ge Z, Zhang W, Xu J, Ma Z, Chen K 2015 Nanoscale Research Letters 10 128

    [4]

    Gao X Q, Zhuo N Z, Wang H B, Cui Y P, Zhang J Y 2015 Acta Phys. Sin. 64 137801 (in Chinese) [高小钦, 卓宁泽, 王海波, 崔一平, 张家雨 2015 物理学报 64 137801]

    [5]

    Matsumoto K, Zhang X X, Kishikawa J, Shimomura K 2015 Jpn. J. Appl. Phys. 54 030208

    [6]

    Shields A J 2007 Nat. Photon. 1 215

    [7]

    Strauf S, Stoltz N G, Rakher M T, Coldren L A, Petroff P M, Bouwmeester D 2007 Nat. Photon. 1 704

    [8]

    Nowak A K, Portalupi S L, Giesz V, Gazzano O, DalSavio C, Braun P F, Karrai K, Arnold C, Lanco L, Sagnes I, Lemaître A, Senellart P 2014 Nat. Commun.5 3240

    [9]

    Badolato A, Hennessy K, Atatre M, Dreiser J, Hu E, Petroff P M, Imamoğlu A 2005 Science 308 1158

    [10]

    Santori C, Fattal D, Vučković J, Solomon G S, Yamamoto Y 2002 Nature 419 594

    [11]

    Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J N, Smith D R, Mikkelsen M H 2014 Nat. Photon. 8 835

    [12]

    Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802

    [13]

    Shahin S, Gangopadhyay P, Norwood R A 2012 Appl. Phys. Lett. 101 053109

    [14]

    Wang D H, Kim D Y, Choi K W, Seo J H, Im S H, Park J H, Park O O, Heeger A J 2011 Angew. Chem. 123 5633

    [15]

    Fang P P, Lu X H, Liu H, Tong Y X 2015 Trends in Analytical Chemistry 66 103

    [16]

    Pfeiffer M, Lindfors K, Atkinson P, Rastelli A, Schmidt O G, Giessen H, Lippitz M 2012 Phys. Status Solidi B 249 678

    [17]

    Liang H Y, Li Z P, Wang W Z, Wu Y S, Xu H X 2009 Adv. Mater. 21 4614

    [18]

    Schaffernak G, Gruber C, Krenn J R, Krug M K, Gašpari M, Belitsch M, Hohenau A 2015 Proc. of SPIE 9450 94501S-1

    [19]

    Wang H Y, Dou X M, Yang S, Su D, Jiang D S, Ni H Q, Niu Z C, Sun B Q 2014 J. Appl. Phys. 115 123104

  • [1]

    Chang J, Kuga Y, Mora-Seró I, Toyoda T, Ogomi Y, Hayase S, Bisquert J, Shen Q 2015 Nanoscale 7 5446

    [2]

    Luther J M, Gao J B, Lloyd M T, Semonin O E, Beard M C, Nozik A J 2010 Adv. Mater. 22 3704

    [3]

    Wang H, Xu L, Zhang R, Ge Z, Zhang W, Xu J, Ma Z, Chen K 2015 Nanoscale Research Letters 10 128

    [4]

    Gao X Q, Zhuo N Z, Wang H B, Cui Y P, Zhang J Y 2015 Acta Phys. Sin. 64 137801 (in Chinese) [高小钦, 卓宁泽, 王海波, 崔一平, 张家雨 2015 物理学报 64 137801]

    [5]

    Matsumoto K, Zhang X X, Kishikawa J, Shimomura K 2015 Jpn. J. Appl. Phys. 54 030208

    [6]

    Shields A J 2007 Nat. Photon. 1 215

    [7]

    Strauf S, Stoltz N G, Rakher M T, Coldren L A, Petroff P M, Bouwmeester D 2007 Nat. Photon. 1 704

    [8]

    Nowak A K, Portalupi S L, Giesz V, Gazzano O, DalSavio C, Braun P F, Karrai K, Arnold C, Lanco L, Sagnes I, Lemaître A, Senellart P 2014 Nat. Commun.5 3240

    [9]

    Badolato A, Hennessy K, Atatre M, Dreiser J, Hu E, Petroff P M, Imamoğlu A 2005 Science 308 1158

    [10]

    Santori C, Fattal D, Vučković J, Solomon G S, Yamamoto Y 2002 Nature 419 594

    [11]

    Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J N, Smith D R, Mikkelsen M H 2014 Nat. Photon. 8 835

    [12]

    Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802

    [13]

    Shahin S, Gangopadhyay P, Norwood R A 2012 Appl. Phys. Lett. 101 053109

    [14]

    Wang D H, Kim D Y, Choi K W, Seo J H, Im S H, Park J H, Park O O, Heeger A J 2011 Angew. Chem. 123 5633

    [15]

    Fang P P, Lu X H, Liu H, Tong Y X 2015 Trends in Analytical Chemistry 66 103

    [16]

    Pfeiffer M, Lindfors K, Atkinson P, Rastelli A, Schmidt O G, Giessen H, Lippitz M 2012 Phys. Status Solidi B 249 678

    [17]

    Liang H Y, Li Z P, Wang W Z, Wu Y S, Xu H X 2009 Adv. Mater. 21 4614

    [18]

    Schaffernak G, Gruber C, Krenn J R, Krug M K, Gašpari M, Belitsch M, Hohenau A 2015 Proc. of SPIE 9450 94501S-1

    [19]

    Wang H Y, Dou X M, Yang S, Su D, Jiang D S, Ni H Q, Niu Z C, Sun B Q 2014 J. Appl. Phys. 115 123104

计量
  • 文章访问数:  4829
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-31
  • 修回日期:  2015-07-15
  • 刊出日期:  2015-12-05

/

返回文章
返回