搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

配体修饰的金纳米颗粒的二次谐波散射多极子分析

张雨佳 卢敏健 李岩 尉昊赟

引用本文:
Citation:

配体修饰的金纳米颗粒的二次谐波散射多极子分析

张雨佳, 卢敏健, 李岩, 尉昊赟

Second harmonic scattering multipole analysis of ligand-decorated gold nanoparticles

Zhang Yu-Jia, Lu Min-Jian, Li Yan, Wei Hao-Yun
PDF
HTML
导出引用
  • 贵金属纳米颗粒的配体修饰在生化传感、催化、纳米科学等领域有着广泛的应用需求, 深入了解其配体作用过程机制有着深刻的意义. 二次谐波散射技术(SHS)由于具有较高的表面敏感性和无标记检测的优势特征, 成为研究金属纳米颗粒配体修饰过程的重要手段. 本文通过实验方法, 测量了在两种配体修饰分子(十六烷基三甲基氯化铵和L-半胱氨酸)吸附同样尺寸金纳米球前后的二次谐波(SH)散射图样, 观察了散射图样的强度和形状的变化并进行了分析. 基于Dadap的多极子理论, 本文推导了较大尺寸纳米球的SH散射场的多极子展开式, 以及多极子(到八极子)贡献和纳米球半径的关系, 并由此提出等效尺寸效应来描述不同配体吸附情况对散射图样的影响, 较好地解释了图样的变化趋势. 本文提供了一种分析不同配体修饰的二次谐波散射过程的方法, 同时也为纳米粒子表面配体的界面物理化学分析提供了一种可能的定量方法.
    Ligand decoration of noble metallic nanoparticles is often needed for some applications, such as biochemical sensing, catalysis and nanotechnology, and the understanding of its process is of great importance. The second harmonic scattering (SHS) technique with advantages of surface-sensitivity and label-free detection, provides intrinsic information for such a research. In this work, the second harmonic(SH) scattering patterns of two types of ligands (cetyltrimethylammonium chloride and L-cysteine) capped gold nanoparticles (GNPs) with the same radii are measured. Both the intensities and shapes of the SH scattering patterns are changed after the ligand exchange process. In order to explain the pattern changes, the analytic expressions of SH scattering are derived theoretically for a relatively large nanoparticle based on Dadap’s multipolar theory. Considering the derived relationship between the multipole (up to octopole) contributions and the power of the nanosphere radius, the effective size effect is introduced to express the SH scattering signal change for different ligand decorations and well explain the experimental results. This theory provides a new perspective of the SH scattering response to different capping ligands and offers a possible quantitative method to analyze interface physical chemistry for ligands on the surface of nanoparticles.
      通信作者: 尉昊赟, luckiwei@mail.tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61775114)资助的课题.
      Corresponding author: Wei Hao-Yun, luckiwei@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61775114)
    [1]

    Zhou J, Ralston J, Sedev R, Beattie D A 2009 J. Colloid Interface Sci. 331 251Google Scholar

    [2]

    Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Brevet P F 2008 J. Opt. Soc. Am. B: Opt. Phys. 25 955Google Scholar

    [3]

    Dinkel R, Peukert W, Braunschweig B 2017 J. Phys. Condens. Matter 29 133002Google Scholar

    [4]

    Dinkel R, Jakobi J, Ziefuss A R, Barcikowski S, Braunschweig B, Peukert W 2018 J. Phys. Chem. C 122 27383Google Scholar

    [5]

    Butet J, Brevet P F, Martin O J F 2015 Acs Nano 9 10545Google Scholar

    [6]

    邹伟博, 周骏, 金理, 张昊鹏 2012 物理学报 61 097805Google Scholar

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805Google Scholar

    [7]

    王凯, 杨光, 龙华, 李玉华, 戴能利, 陆培祥 2008 物理学报 57 3862Google Scholar

    Wang K, Yang G, Long H, Li Y H, Dai N L, Lu P X 2008 Acta Phys. Sin. 57 3862Google Scholar

    [8]

    Kuchler M, Rebentrost F 1993 Phys. Rev. Lett. 71 2662Google Scholar

    [9]

    Rebentrost F 1995 Prog. Surf. Sci. 48 71Google Scholar

    [10]

    Nikoobakht B, El-Sayed M A 2001 Langmuir 17 6368Google Scholar

    [11]

    Sawaguchi T, Sato Y, Mizutani F 2001 Phys. Chem. Chem. Phys. 3 3399Google Scholar

    [12]

    Zhang P, Sham T K 2002 Appl. Phys. Lett. 81 736Google Scholar

    [13]

    Gan W, Xu B, Dai H L 2011 Angew. Chem. Int. Ed. 50 6622Google Scholar

    [14]

    El Harfouch Y, Benichou E, Bertorelle F, Russier-Antoine I, Jonin C, Lascoux N, Brevet P F 2012 J. Phys. Condens. Matter 24 124104Google Scholar

    [15]

    Ngo H M, Ledoux-Rak I 2014 Proc. SPIE 9171 91710Y

    [16]

    Park J W, Shumaker-Parry J S 2015 ACS Nano 9 1665Google Scholar

    [17]

    Van Steerteghem N, Van Cleuvenbergen S, Deckers S, Kumara C, Dass A, Hakkinen H, Clays K, Verbiest T, Knoppe S 2016 Nanoscale 8 12123Google Scholar

    [18]

    Sipe J E, So V C Y, Fukui M, Stegeman G I 1980 Phys. Rev. B 21 4389Google Scholar

    [19]

    Dadap J I, Shan J, Eisenthal K B, Heinz T F 1999 Phys. Rev. Lett. 83 4045Google Scholar

    [20]

    Russier-Antoine I, Huang J, Benichou E, Bachelier G, Jonin C, Brevet P F 2008 Chem. Phys. Lett. 450 345Google Scholar

    [21]

    Haber L H, Kwok S J J, Semeraro M, Eisenthal K B 2011 Chem. Phys. Lett. 507 11Google Scholar

    [22]

    Karam T E, Haber L H 2014 J. Phys. Chem. C 118 642Google Scholar

    [23]

    Das A, Chakrabarti A, Das P K 2017 Nanoarmoring of Enzymes: Rational Design of Polymer-Wrapped Enzymes pp33–58

    [24]

    Troiano J M, Kuech T R, Vartanian A M, Torelli M D, Sen A, Jacob L M, Hamers R J, Murphy C J, Pedersen J A, Geiger F M 2016 J. Phys. Chem. C 120 20659Google Scholar

    [25]

    Buck M, Eisert F, Fischer J, Grunze M, Trager F 1991 Appl. Phys. A 53 552Google Scholar

    [26]

    Dinkel R, Braunschweig B, Peukert W 2016 Phys. Chem. C 120 1673Google Scholar

    [27]

    Butet J, Maurice A, Bergmann E, Bachelier G, Russier-Antoine I, Ray C, Bonhomme O, Jonin C, Benichou E, Brevet P F 2019 Metal Nanostruct. Photonics 105

    [28]

    Ray P C 2010 Chem. Rev. 110 5332Google Scholar

    [29]

    Das K, Uppal A, Saini R K, Varshney G K, Mondal P, Gupta P K 2014 Spectrochim. Acta, Part A 128 398Google Scholar

    [30]

    Galletto P, Brevet P F, Girault H H, Antoine R, Broyer M 1999 J. Phys. Chem. B 103 8706

    [31]

    Nappa J, Revillod G, Russier-Antoine I, Benichou E, Jonin C, Brevet P F 2005 Phys. Rev. B 71 165407Google Scholar

    [32]

    Nappa J, Russier-Antoine I, Benichou E, Jonin C, Brevet P F 2006 J. Chem. Phys. 125 184712Google Scholar

    [33]

    Butet J, Bachelier G, Russier-Antoine I, Jonin C, Benichou E, Brevet P F 2010 Phys. Rev Lett. 105 077401Google Scholar

    [34]

    Svoboda K, Block S M 1994 Opt. Lett. 19 930Google Scholar

    [35]

    Zheng Y, Zhong X, Li Z, Xia Y J P 2014 Part. Part. Syst. Char. 31 266Google Scholar

    [36]

    Kutz R B, Braunschweig B, Mukherjee P, Behrens R L, Dlott D D, Wieckowski A 2011 J. Catal. 278 181Google Scholar

    [37]

    Dadap J I, Shan J, Heinz T F 2004 J. Opt. Soc. Am. B 21 1328Google Scholar

  • 图 1  (a) 60 nm直径大小的CTAC修饰的金纳米颗粒的TEM图像; (b) 两组混合液的UV-Vis吸收光谱, 左右箭头分别代表SH散射光波长和激发光波长

    Fig. 1.  (a) TEM image of 60 nm CTAC-capped gold nanoparticles (GNPs); (b) UV-Vis absorbance spectra of the CTAC-capped GNP and L-cysteine/CTAC-capped GNP colloidal solutions. The left and right arrows indicate the SH wavelength and the excitation light wavelength, respectively.

    图 2  (a) 激发光光谱; (b) 垂直偏振入射下的CTAC修饰的金纳米颗粒的p-偏振SH散射光光谱

    Fig. 2.  (a) The spectrum of excitation light; (b) the p-polarized spectrum of SH scattering light from the CTAC-capped GNP under vertically-polarized incidence.

    图 3  60 nm金颗粒在不同修饰配体下的随入射光偏振角度变化的(a) p偏振和(b) s偏振的SH散射图样, 其中实心圆和三角为实验点, 实线为拟合实验点. 两个权重因子${\zeta ^{\rm{V}}}$${\zeta ^{\rm{H}}}$在配体交换过程前后的变化也在图中展示出来

    Fig. 3.  (a) The p-polarized and (b) s-polarized SH scattering patterns of 60-nm GNPs with different surface ligand coverage as a function of the incoming fundamental beam polarization angle: experimental points (filled circles and triangles) and fit to the experimental points (solid line). The changes of ${\zeta ^{\rm{V}}}$ and ${\zeta ^{\rm{H}}}$ for the ligand-exchange process are also shown.

    图 4  球体的SH散射模型原理图

    Fig. 4.  Schematic of SH scattering model for a sphere.

    表 1  沿x轴方向偏振的激发场下的$ b_{ijk}^{lm} $表达式

    Table 1.  Coefficients $ b_{ijk}^{lm} $ for an excitation field polarized along x direction.

    $ (l, m) $$ b_{ \bot \bot \bot }^{lm}/E_0^2 $$ b_{ \bot \parallel \parallel }^{lm}/E_0^2 $$b_{\parallel \bot \parallel , {{E} } }^{lm}/E_0^2$$b_{\parallel \bot \parallel , {{M} } }^{lm}/E_0^2$
    $ (1, 0) $$\dfrac{4}{5}\sqrt {\dfrac{\text{π} }{3} } {\rm{i}}L_ \bot ^{ {{\rm{E}}} 1}(\omega )L_ \bot ^{ {{\rm{E}}} 2}(\omega ){K_1}a$$\begin{gathered} \dfrac{2}{5}\sqrt {\dfrac{\text{π} }{3} } {\rm{i} }L_\parallel ^{ { {\rm{E} } } 1}(\omega ) \\ \times[5 L_\parallel ^{ { {\rm{M} } } 1}(\omega ) + 3 L_\parallel ^{ { {\rm{E} } } 2}(\omega )]{K_1}a \end{gathered}$$\begin{gathered} \dfrac{1}{5}\sqrt {\dfrac{ {2\text{π} } }{3} } [ - 5 L_ \bot ^{ { {\rm{E} } } 1}(\omega )L_\parallel ^{ { {\rm{M} } } 1}(\omega ) \\ + 3 L_ \bot ^{ { {\rm{E} } } 1}(\omega )L_\parallel ^{ { {\rm{E} } } 2}(\omega ) \\ -2 L_ \bot ^{ { {\rm{E} } } 2}(\omega )L_\parallel ^{ { {\rm{E} } } 1}(\omega )]{K_1}a \\ \end{gathered}$0
    $ (2, 0) $$- \dfrac{2}{3}\sqrt {\dfrac{\text{π} }{5} } {[L_ \bot ^{ {{\rm{E}}} 1}(\omega )]^2}$$\dfrac{2}{3}\sqrt {\dfrac{\text{π} }{5} } {[L_\parallel ^{ { {\rm{E} } } 1}(\omega )]^2}$$2\sqrt {\dfrac{ {2\text{π} } }{ {15} } } {\rm{i}}[L_ \bot ^{ {E} 1}(\omega )L_\parallel ^{ {{\rm{E}}} 1}(\omega )]$0
    $ (2, \pm 2) $$\sqrt {\dfrac{ {2\text{π} } }{ {15} } } {[L_ \bot ^{ {{\rm{E}}} 1}(\omega )]^2}$$- \sqrt {\dfrac{ {2\text{π} } }{ {15} } } {[L_\parallel ^{ {{\rm{E}}} 1}(\omega )]^2}$$- 2\sqrt {\dfrac{\text{π} }{5} } {\rm{i}}[L_ \bot ^{ {{\rm{E}}} 1}(\omega )L_\parallel ^{ {{\rm{E}}} 1}(\omega )]$0
    $ (3, 0) $$\dfrac{4}{ {35} }\sqrt {7\text{π} } {\rm{i}}L_ \bot ^{ {{\rm{E}}} 1}(\omega )L_ \bot ^{ {{\rm{E}}} 2}(\omega ){K_1}a$$\dfrac{4}{ {35} }\sqrt {7\text{π} } {\rm{i}}L_\parallel ^{ {{\rm{E}}} 1}(\omega )L_\parallel ^{ {{\rm{E}}} 2}(\omega ){K_1}a$$\begin{gathered} - \dfrac{ {8\sqrt {21\text{π} } } }{ {105} }\left( {L_\parallel ^{ { {\rm{E} } } 1}(\omega )L_ \bot ^{ { {\rm{E} } } 2}(\omega )} \right. \\ \left. { + L_ \bot ^{ { {\rm{E} } } 1}(\omega )L_\parallel ^{ { {\rm{E} } } 2}(\omega )} \right){K_1}a \\ \end{gathered}$0
    $ (3, \pm 2) $$2\sqrt {\dfrac{ {2\text{π} } }{ {105} } } {\rm{i}}L_ \bot ^{ {{\rm{E}}} 1}(\omega )L_ \bot ^{ {{\rm{E}}} 2}(\omega ){K_1}a$$- 2\sqrt {\dfrac{ {2\text{π} } }{ {105} } } {\rm{i}}L_\parallel ^{ {{\rm{E}}} 1}(\omega )L_\parallel ^{ {{\rm{E}}} 2}(\omega ){K_1}a$$\begin{gathered} \dfrac{4}{3}\sqrt {\dfrac{ {2\text{π} } }{ {35} } } \left( {L_\parallel ^{ { {\rm{E} } } 1}(\omega )L_ \bot ^{ { {\rm{E} } } 2}(\omega )} \right. \\ \left. { + L_ \bot ^{ { {\rm{E} } } 1}(\omega )L_\parallel ^{ { {\rm{E} } } 2}(\omega )} \right){K_1}a \\ \end{gathered}$0
    下载: 导出CSV

    表 2  不同的激发-辐射模式以及SH多极子与$ {K_1}a $因子的幂次关系

    Table 2.  The Excitation-radiation channels and the power relationship to the factor $ ({K_1}a) $ with the electric field.

    基场多极子 SH场多极子与$ ({K_1}a) $的幂
    次关系
    SH场偏
    振方向
    ${{\rm{E}}} 1$${{\rm{E}}} 1$ ${{\rm{E}}} 1$$ \propto {({K_1}a)^2} $s/p
    ${{\rm{E}}} 1$${\rm{E}}2$ ${{\rm{E}}} 1$$ \propto {({K_1}a)^3} $p
    ${{\rm{E}}} 1$${\rm{M}}1$ ${{\rm{E}}} 1$$ \propto {({K_1}a)^3} $p
    ${{\rm{E}}} 1$${{\rm{E}}} 1$ ${\rm{E}}2$$ \propto {({K_1}a)^3} $s
    ${{\rm{E}}} 1$${\rm{E}}2$ ${{\rm{E}}} 3$$ \propto {({K_1}a)^5} $p
    下载: 导出CSV
  • [1]

    Zhou J, Ralston J, Sedev R, Beattie D A 2009 J. Colloid Interface Sci. 331 251Google Scholar

    [2]

    Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Brevet P F 2008 J. Opt. Soc. Am. B: Opt. Phys. 25 955Google Scholar

    [3]

    Dinkel R, Peukert W, Braunschweig B 2017 J. Phys. Condens. Matter 29 133002Google Scholar

    [4]

    Dinkel R, Jakobi J, Ziefuss A R, Barcikowski S, Braunschweig B, Peukert W 2018 J. Phys. Chem. C 122 27383Google Scholar

    [5]

    Butet J, Brevet P F, Martin O J F 2015 Acs Nano 9 10545Google Scholar

    [6]

    邹伟博, 周骏, 金理, 张昊鹏 2012 物理学报 61 097805Google Scholar

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805Google Scholar

    [7]

    王凯, 杨光, 龙华, 李玉华, 戴能利, 陆培祥 2008 物理学报 57 3862Google Scholar

    Wang K, Yang G, Long H, Li Y H, Dai N L, Lu P X 2008 Acta Phys. Sin. 57 3862Google Scholar

    [8]

    Kuchler M, Rebentrost F 1993 Phys. Rev. Lett. 71 2662Google Scholar

    [9]

    Rebentrost F 1995 Prog. Surf. Sci. 48 71Google Scholar

    [10]

    Nikoobakht B, El-Sayed M A 2001 Langmuir 17 6368Google Scholar

    [11]

    Sawaguchi T, Sato Y, Mizutani F 2001 Phys. Chem. Chem. Phys. 3 3399Google Scholar

    [12]

    Zhang P, Sham T K 2002 Appl. Phys. Lett. 81 736Google Scholar

    [13]

    Gan W, Xu B, Dai H L 2011 Angew. Chem. Int. Ed. 50 6622Google Scholar

    [14]

    El Harfouch Y, Benichou E, Bertorelle F, Russier-Antoine I, Jonin C, Lascoux N, Brevet P F 2012 J. Phys. Condens. Matter 24 124104Google Scholar

    [15]

    Ngo H M, Ledoux-Rak I 2014 Proc. SPIE 9171 91710Y

    [16]

    Park J W, Shumaker-Parry J S 2015 ACS Nano 9 1665Google Scholar

    [17]

    Van Steerteghem N, Van Cleuvenbergen S, Deckers S, Kumara C, Dass A, Hakkinen H, Clays K, Verbiest T, Knoppe S 2016 Nanoscale 8 12123Google Scholar

    [18]

    Sipe J E, So V C Y, Fukui M, Stegeman G I 1980 Phys. Rev. B 21 4389Google Scholar

    [19]

    Dadap J I, Shan J, Eisenthal K B, Heinz T F 1999 Phys. Rev. Lett. 83 4045Google Scholar

    [20]

    Russier-Antoine I, Huang J, Benichou E, Bachelier G, Jonin C, Brevet P F 2008 Chem. Phys. Lett. 450 345Google Scholar

    [21]

    Haber L H, Kwok S J J, Semeraro M, Eisenthal K B 2011 Chem. Phys. Lett. 507 11Google Scholar

    [22]

    Karam T E, Haber L H 2014 J. Phys. Chem. C 118 642Google Scholar

    [23]

    Das A, Chakrabarti A, Das P K 2017 Nanoarmoring of Enzymes: Rational Design of Polymer-Wrapped Enzymes pp33–58

    [24]

    Troiano J M, Kuech T R, Vartanian A M, Torelli M D, Sen A, Jacob L M, Hamers R J, Murphy C J, Pedersen J A, Geiger F M 2016 J. Phys. Chem. C 120 20659Google Scholar

    [25]

    Buck M, Eisert F, Fischer J, Grunze M, Trager F 1991 Appl. Phys. A 53 552Google Scholar

    [26]

    Dinkel R, Braunschweig B, Peukert W 2016 Phys. Chem. C 120 1673Google Scholar

    [27]

    Butet J, Maurice A, Bergmann E, Bachelier G, Russier-Antoine I, Ray C, Bonhomme O, Jonin C, Benichou E, Brevet P F 2019 Metal Nanostruct. Photonics 105

    [28]

    Ray P C 2010 Chem. Rev. 110 5332Google Scholar

    [29]

    Das K, Uppal A, Saini R K, Varshney G K, Mondal P, Gupta P K 2014 Spectrochim. Acta, Part A 128 398Google Scholar

    [30]

    Galletto P, Brevet P F, Girault H H, Antoine R, Broyer M 1999 J. Phys. Chem. B 103 8706

    [31]

    Nappa J, Revillod G, Russier-Antoine I, Benichou E, Jonin C, Brevet P F 2005 Phys. Rev. B 71 165407Google Scholar

    [32]

    Nappa J, Russier-Antoine I, Benichou E, Jonin C, Brevet P F 2006 J. Chem. Phys. 125 184712Google Scholar

    [33]

    Butet J, Bachelier G, Russier-Antoine I, Jonin C, Benichou E, Brevet P F 2010 Phys. Rev Lett. 105 077401Google Scholar

    [34]

    Svoboda K, Block S M 1994 Opt. Lett. 19 930Google Scholar

    [35]

    Zheng Y, Zhong X, Li Z, Xia Y J P 2014 Part. Part. Syst. Char. 31 266Google Scholar

    [36]

    Kutz R B, Braunschweig B, Mukherjee P, Behrens R L, Dlott D D, Wieckowski A 2011 J. Catal. 278 181Google Scholar

    [37]

    Dadap J I, Shan J, Heinz T F 2004 J. Opt. Soc. Am. B 21 1328Google Scholar

  • [1] 任立庆, 杨强, 姬超燃, 池娇, 胡云, 魏迎春, 许金友. 基于二次谐波产生光谱与显微成像的CdS纳米线空间取向研究. 物理学报, 2024, 73(16): 164207. doi: 10.7498/aps.73.20240753
    [2] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [3] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光. 物理学报, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [4] 张萌徕, 覃赵福, 陈卓. 基于开口环阵列结构的表面晶格共振产生及二次谐波增强. 物理学报, 2021, 70(5): 054206. doi: 10.7498/aps.70.20201424
    [5] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [6] 许青林, 项婷, 徐伟, 李婷, 吴小龑, 李巍, 邱学军, 陈平. 金纳米粒子修饰氧化铟锡阳极的高效率红光钙钛矿发光二极管. 物理学报, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [7] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究. 物理学报, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [8] 申钰田, 孟胜. 光解水的原子尺度机理和量子动力学. 物理学报, 2019, 68(1): 018202. doi: 10.7498/aps.68.20181312
    [9] 王丹, 贺永宁, 叶鸣, 崔万照. 金纳米结构表面二次电子发射特性. 物理学报, 2018, 67(8): 087902. doi: 10.7498/aps.67.20180079
    [10] 苏丹, 窦秀明, 丁琨, 王海艳, 倪海桥, 牛智川, 孙宝权. 金纳米颗粒光散射提高InAs单量子点荧光提取效率. 物理学报, 2015, 64(23): 235201. doi: 10.7498/aps.64.235201
    [11] 叶通, 高云, 尹彦. 利用聚碳酸酯模板制备的金纳米棒的表面增强Raman散射效应研究. 物理学报, 2013, 62(12): 127801. doi: 10.7498/aps.62.127801
    [12] 郑立思, 冯苗, 詹红兵. 表面修饰基团对金纳米颗粒非线性光学效应的影响研究. 物理学报, 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [13] 王 凯, 杨 光, 龙 华, 李玉华, 戴能利, 陆培祥. 金纳米颗粒的有序制备及其光学特性. 物理学报, 2008, 57(6): 3862-3867. doi: 10.7498/aps.57.3862
    [14] 李 俊, 张凯旺, 孟利军, 刘文亮, 钟建新. 碳纳米管表面金纳米颗粒的形成与结构转变. 物理学报, 2008, 57(1): 382-386. doi: 10.7498/aps.57.382
    [15] 李 智, 张家森, 杨 景, 龚旗煌. 飞秒时间分辨近场光学系统实现及其应用. 物理学报, 2007, 56(6): 3630-3635. doi: 10.7498/aps.56.3630
    [16] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [17] 曾惠丹, 曲士良, 姜雄伟, 邱建荣, 朱从善, 干福熹. 飞秒激光作用下金掺杂硅酸盐玻璃的光致晶化研究. 物理学报, 2003, 52(10): 2525-2529. doi: 10.7498/aps.52.2525
    [18] 李列明, 孙鑫, 冯伟国. 金属-真空表面的二次谐波理论. 物理学报, 1990, 39(4): 620-626. doi: 10.7498/aps.39.620
    [19] 李乐, 俞公达, 董抒雁, 王恭明, 章志鸣. 光学二次谐波法研究银表面吸附吡啶分子的特性. 物理学报, 1989, 38(2): 301-306. doi: 10.7498/aps.38.301
    [20] 陈正豪, 崔大复, 吕惠宾, 周岳亮. 在GaAs-Al界面上红外表面二次谐波的产生及其特性研究. 物理学报, 1984, 33(3): 428-433. doi: 10.7498/aps.33.428
计量
  • 文章访问数:  4409
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 修回日期:  2022-05-09
  • 上网日期:  2022-08-27
  • 刊出日期:  2022-09-05

/

返回文章
返回