-
金纳米颗粒对提升钙钛矿发光二极管的外量子效率有重要作用. 为了避免金纳米颗粒与发光层直接接触, 先前工作合成的Au NPs@SiO2影响器件电荷传输且不易合成; 而将金纳米颗粒共混在聚 (3,4-乙烯二氧噻吩):聚 (苯乙烯磺酸酯) 中时, 金纳米密度又不易控制, 不适合做理想的空穴传输层. 于是, 本文采用静电吸附的方法将粒径约20 nm的金纳米颗粒均匀地修饰在氧化铟锡阳极上, 并采用聚 (9-乙烯基咔唑) 作为空穴传输层, 使红光(NMA)2Csn–1PbnI3n+1钙钛矿发光二极管的最大发光亮度从未修饰金纳米颗粒前的约5.2上升到约83.2 cd/m2, 最大外量子效率从约0.255%上升到约6.98%. 机理研究表明, 金纳米颗粒修饰的氧化铟锡电极与铝电极之间可以形成光学微腔. 利用微腔中的透射光与反射光相互作用, 可以增强器件整体的耦合出光效率. 金纳米颗粒修饰的(NMA)2Csn–1PbnI3n+1钙钛矿器件荧光光谱和荧光强度随角度关系, 证明了该微腔效应是导致(NMA)2Csn–1PbnI3n+1钙钛矿荧光增强的主要机制. 其次, 对金纳米颗粒密度对器件发光特性进行探究, 发现约15 min吸附时间的器件性能最优. 最后, 本文论证了金纳米颗粒对钙钛矿薄膜形貌、结晶、电学性能的影响和金纳米颗粒等离子体共振效应不是主要机制. 本工作将金纳米颗粒成功应用于红光钙钛矿发光二极管, 为将来进一步探索低成本、高效率的钙钛矿发光二极管提供了一种可行的研究思路.Gold nanoparticles (Au NPs) play an important role in improving the external quantum efficiency of perovskite light emitting diodes (PeLED). To avoid direct contact between the Au NPs and the light emitting layer, the Au NPs@SiO2 structure and blending the Au NPs into the hole transport layer (HTL) or electron transport layer (ETL) have been proposed previously. However, the Au NPs@SiO2 is difficult to obtain and affects the charge transport. When the Au NPs is blended in poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT: PSS), the density of Au NPs is not easily controlled and the PEDOT:PSS is not an ideal HTL for PeLED. Therefore, the electrostatic adsorption is used in this work to uniformly disperse the ~20 nm-size Au NPs on the top of the ITO anode, and the Poly(9-vinylcarbazole) (PVK) is spin-coated as the HTL to achieve the high performance red PeLED based on the (NMA)2Csn–1PbnI3n+1. After the Au NPs modification, the maximum luminous brightness rises from ~5.2 to ~83.2 cd/m2. Meanwhile, the maximum external quantum efficiency rises from ~0.255% to ~6.98%. Mechanism studies show that microcavity can be formed between the Au NPs-modified ITO anode and the Al cathode, and the transmitted light and the reflected light interfere with each other to improve the output couple efficiency of the PeLED. The photoluminescence (PL) spectrum and angle dependent PL intensity of the Au NPs-modified PeLED prove that the fluorescence enhancement of the (NMA)2Csn–1PbnI3n+1 perovskite is attributed mainly to the microcavity effect. Furthermore, the effects of Au NPs density on the performance of the PeLED are investigated, which reveals that the device with ~15 min adsorption is optimal. Finally, we rule out the contributions of Au NPs to the morphology, crystallization, electrical properties and localized surface plasmon resonance (LSPR) effects of (NMA)2Csn–1PbnI3n+1 perovskite films. In this work, the Au NPs are successfully applied to red PeLED for the first time, providing a feasible way of developing the low-cost and high-efficiency PeLED.
-
Keywords:
- gold nanoparticals /
- electrostatic adsorption /
- micocavity effect /
- perovskite light emitting diodes
[1] Qian J Y, Xu B, Tian W J 2016 Org. Electron. 37 61Google Scholar
[2] Yuan M J, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y B, Beauregard E M, Kanjanaboos P, Lu Z H, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar
[3] Lozano G 2018 Phys. Chem. Lett. 9 3987Google Scholar
[4] Song Z, Zhao J, Liu Q L 2019 Inorg. Chem. Front. 6 2969Google Scholar
[5] Wu H, Yang Y, Zhou D, Li K, Yu J, Han J, Li Z, Long Z, Ma J, Qiu J 2018 Nanoscale 10 3429Google Scholar
[6] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington, Hanusch F, Bein, Snaith H J, Friend R 2018 Nat. Nanotechnol. 9 687Google Scholar
[7] Fang Z B, Chen W J, Shi Y L, Zhao J, Chu S, Zhang J, Xiao Z G 2020 Adv. Funct. Mater. 30 1909754Google Scholar
[8] Vashishth P, Halper J E 2017 Chem. Mater. 29 5965Google Scholar
[9] Kim D H, Kim Y C, An H J, Myoung J M 2020 J. Alloys Compd. 845 156272Google Scholar
[10] Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S 2019 Nat. Commun. 10 1868Google Scholar
[11] Fu X, Mehta Y, Chen Y, Lei L, So F 2021 Adv. Mater. 33 2006801Google Scholar
[12] Zhang Y, Sun H, Zhang S, Li S, Wang X, Zhang X, Liu T, Guo Z 2019 Opt. Mater. 89 563Google Scholar
[13] Chen P, Xiong Z, Wu X, Shao M, Gao C 2017 J. Phys. Chem. Lett. 8 3961Google Scholar
[14] Lin H H, Chen I C 2015 J. Phys. Chem. C. 119 26663Google Scholar
[15] Tiwari A, Satpute N S, Mehare C M, Dhoble S J 2020 J. Alloys Compd. 850 156827Google Scholar
[16] Sum T C, Righetto M, Lim S S 2020 J. Chem. Phys. 152 130901Google Scholar
[17] Guo Y W, Jia Y H, Li N, Chen M Y, Hu S J, Liu C, Zhao N 2020 Adv. Funct. Mater. 30 1910464Google Scholar
[18] Shen Y, Li M N, Li Y, Xie F M, Tang J X 2020 ACS Nano. 14 6107Google Scholar
[19] Wang S P, Chang C K, Yang S H, Chang C Y, Chao Y C 2018 Mater. Res. Express 5 015037Google Scholar
[20] Dodabalapur A, Rothberg L J, Jordan R H, Miller T M, Slusher R E, Phillips J M 1996 J. Appl. Phys. 80 6954Google Scholar
[21] Jain P K, Lee K S, El-Sayed I H, El-Sayed M A 2006 J. Phys. Chem. B 110 7238
[22] Daniel M C, Astruc D 2004 Chem. Rev. 104 293Google Scholar
[23] Sun G, Khurgin J B, Soref R A 2009 Appl. Phys. Lett. 94 101103Google Scholar
[24] Peng J, Xu X, Tian Y, Wang J, Tang F, Li L 2014 Appl. Phys. Lett. 105 173301Google Scholar
[25] Wu X Y, Liu L L, Yu T C, Yu L, Xie Z Q, Mo Y Q, Xu S P, Ma Y G 2013 J. Mater. Chem. C 1 7020Google Scholar
[26] Meng Y, Wu X Y, Xiong Z Y, Lin C Y, Xiong Z H 2018 Nanotechnology 29 175203Google Scholar
[27] Xu T, Li W, Wu X, Ahmadi M, Xu L 2020 J. Mater. Chem. C 8 6615Google Scholar
[28] Meng Y, Ahmadi M, Wu X Y, Xu T F, Xu L, Xiong Z H, Chen P 2018 Org. Electron. 64 47Google Scholar
[29] Li T, Xiang T, Wang M S, Zhang W, Shi J S, Shao M, Xu T F, Ahmadi M, Wu X Y, Gao Z, Xu L, Chen P 2021 Laser Photonics Rev. doi: 10.1002/lpor.202000495
[30] Jbara A S, Munir J, Ul Haq B, Saeed M A 2020 Appl. Opt. 59 3751Google Scholar
[31] Lee J, Song J, Park J, Yoo S 2021 Adv. Opt. Mater. doi: 10.1002/adom.202002182
[32] Miao Y F, Cheng L, Zou W, Gu L H, Zhang J, Guo Q, Peng Q M, Xu M M, He Y R, Zhang S T, Cao Y, Li R Z, Wang N N, Huang W, Wang J P 2020 Light-Sci. Appl. 9 89Google Scholar
[33] Lu M, Zhang Y, Wang S X, Guo J, Yu W W, Rogach A L 2019 Adv. Funct. Mater. 2019 29 1902008
[34] Yuichiro, Kawamura, Hiroyuki, Sasabe, Chihaya 2005 Jpn. J. Appl. Phys. 44 1160Google Scholar
[35] Zhang J, Zhang L, Cai P, Xue X, Wang M, Zhang J, Tu G 2019 Nano Energy 62 434Google Scholar
[36] Kumar M, Pawar V, Jha P A, Gupta S K, Sinha A S K, Jha P K, Singh P 2019 J. Mater. Sci. -Mater. Electron. 30 6071Google Scholar
[37] Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J 2015 J. Mater. Chem. A 3 19688Google Scholar
[38] Bulovic V, Khalfin V B, Gu G, Burrows P E 1998 Phys. Rev. B 58 3730Google Scholar
[39] He Z F, Liu Y, Yang Z L, Li J, Cui J Y, Chen D, Fang Z S, He H P, Ye Z Z, Zhu H M, Wang N N, Wang J P, Jin Y Z 2019 ACS Photonics 2019 6 587
-
图 1 (a) 15 min静电吸附的Au NPs修饰的ITO表面的SEM图像和Au NPs修饰的PeLED结构示意图, 插图展示了Au NPs和PDDA分子式; 有、无Au NPs修饰的PeLED的(b)电流密度-电压 (J-V) 曲线, (c)亮度-电压曲线 (L-V) , (d)外量子效率 ( EQE-V) 曲线以及 (e) 约6 V下的EL谱
Fig. 1. (a) SEM image of the Au NPs modified ITO with 15 min electrostatic adsorption and schematic diagram of the device structure of Au NPs modified PeLED, the insets show the Au NPs and the molecular structure of PDDA; (b) the J-V curve, (c) the L-V curve, (d) EQE-V curve of PeLEDs with and without Au NPs modification, (e) EL spectrum of PeLEDs with and without Au NPs modification working at about 6 V.
图 2 有、无Au NPs修饰的(NMA)2Csn–1PbnI3n+1钙钛矿薄膜 (a), (b) SEM图; (c) XRD图; (d), (e) UPS图; (f)单空穴器件的J-V曲线; (g) Au NPs溶液的吸收谱和有、无Au NPs修饰的(NMA)2Csn–1PbnI3n+1钙钛矿层的PL发射谱; (h)有、无Au NPs修饰的(NMA)2Csn–1PbnI3n+1薄膜PL lifetime曲线
Fig. 2. SEM images of (NMA)2Csn–1PbnI3n+1 film (a) with and (b)without Au NPs; (c) XRD patterns of (NMA)2Csn–1PbnI3n+1 film with and without Au NPs; (d), (e) UPS characterizations of (NMA)2Csn–1PbnI3n+1 film with and without Au NPs; (f) J-V curves of hole-only devices with and without Au NPs; (g) the absorption spectra of the Au NPs solution and the PL spectrums of the (NMA)2Csn–1PbnI3n+1 film with and without Au NPs; (h) PL lifetime decay curve of the (NMA)2Csn–1PbnI3n+1 film with and without the Au NPs.
图 3 (a) 谐振腔结构示意图; (b) PL发射强度随TmPYPb厚度的变化曲线; 有、无Au NPs修饰的PeLED器件在不同TmPYPb厚度 (650, 1150 Å) 时的(c) PL发射谱和(d) PL强度随角度变化曲线
Fig. 3. (a) Schematic diagram of the micocavity structure; (b) the simulated evolution of PL intensity with TmPYPb thickness; (c) the PL spectrums and (d) the angle dependent of PL intensities of the PeLEDs with and without Au NPs at different TmPYPb thicknesses of about 650 and 1150 Å.
图 4 (a)—(c) 依次为5, 15和60 min吸附时间的Au NPs在ITO表面的SEM图像; 5, 15和60 min PeLED的(d) J-V特性曲线, (e) L-V特性曲线和(f) EQE-V特性曲线; 5, 15和60 min PeLED的(g)亮度随时间变化和(h) EQE随时间变化曲线; (i) 5, 15和60 min PeLED在6 V下的EL谱
Fig. 4. (a)−(c) SEM images of Au NPs modified ITO substrates with 5, 15, and 60 min electrostatic adsorption, respectively; (d)−(f) J-V , L-V and EQE-V curves for 5, 15, and 60 min electrostatic adsorption, respectively; (g), (h) time evolutions of Lmax and EQEmax of PeLEDs with 5, 15, and 60 min electrostatic adsorption, respectively; (i) EL spectra of PeLEDs with 5, 15, and 60 min electrostatic adsorption working at about 6 V.
表 1 有、无Au NPs修饰的(NMA)2Csn–1PbnI3n+1钙钛矿薄膜的荧光寿命拟合参数
Table 1. Fitting parameters for PL lifetimes of the (NMA)2Csn–1PbnI3n+1 films with and without Au NPs.
Au NPs A1/% A2/% A3/% τ1/ns τ2/ns τ3/ns χ2 有 35.02 56.34 8.64 2.78 8.97 41.57 1.12 无 35.31 57.68 7.00 2.43 8.33 43.92 1.05 表 2 各层光学折射率及其厚度总结
Table 2. Summaries of optical refractive index and thickness of each layer.
PVK (NMA)2
Csn–1PbnI3n+1TmPYPb Liq 折射率 n 1.5624 2.46 1.75 1.5 厚度 d/nm 35 35 115 2.5 -
[1] Qian J Y, Xu B, Tian W J 2016 Org. Electron. 37 61Google Scholar
[2] Yuan M J, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y B, Beauregard E M, Kanjanaboos P, Lu Z H, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar
[3] Lozano G 2018 Phys. Chem. Lett. 9 3987Google Scholar
[4] Song Z, Zhao J, Liu Q L 2019 Inorg. Chem. Front. 6 2969Google Scholar
[5] Wu H, Yang Y, Zhou D, Li K, Yu J, Han J, Li Z, Long Z, Ma J, Qiu J 2018 Nanoscale 10 3429Google Scholar
[6] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington, Hanusch F, Bein, Snaith H J, Friend R 2018 Nat. Nanotechnol. 9 687Google Scholar
[7] Fang Z B, Chen W J, Shi Y L, Zhao J, Chu S, Zhang J, Xiao Z G 2020 Adv. Funct. Mater. 30 1909754Google Scholar
[8] Vashishth P, Halper J E 2017 Chem. Mater. 29 5965Google Scholar
[9] Kim D H, Kim Y C, An H J, Myoung J M 2020 J. Alloys Compd. 845 156272Google Scholar
[10] Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S 2019 Nat. Commun. 10 1868Google Scholar
[11] Fu X, Mehta Y, Chen Y, Lei L, So F 2021 Adv. Mater. 33 2006801Google Scholar
[12] Zhang Y, Sun H, Zhang S, Li S, Wang X, Zhang X, Liu T, Guo Z 2019 Opt. Mater. 89 563Google Scholar
[13] Chen P, Xiong Z, Wu X, Shao M, Gao C 2017 J. Phys. Chem. Lett. 8 3961Google Scholar
[14] Lin H H, Chen I C 2015 J. Phys. Chem. C. 119 26663Google Scholar
[15] Tiwari A, Satpute N S, Mehare C M, Dhoble S J 2020 J. Alloys Compd. 850 156827Google Scholar
[16] Sum T C, Righetto M, Lim S S 2020 J. Chem. Phys. 152 130901Google Scholar
[17] Guo Y W, Jia Y H, Li N, Chen M Y, Hu S J, Liu C, Zhao N 2020 Adv. Funct. Mater. 30 1910464Google Scholar
[18] Shen Y, Li M N, Li Y, Xie F M, Tang J X 2020 ACS Nano. 14 6107Google Scholar
[19] Wang S P, Chang C K, Yang S H, Chang C Y, Chao Y C 2018 Mater. Res. Express 5 015037Google Scholar
[20] Dodabalapur A, Rothberg L J, Jordan R H, Miller T M, Slusher R E, Phillips J M 1996 J. Appl. Phys. 80 6954Google Scholar
[21] Jain P K, Lee K S, El-Sayed I H, El-Sayed M A 2006 J. Phys. Chem. B 110 7238
[22] Daniel M C, Astruc D 2004 Chem. Rev. 104 293Google Scholar
[23] Sun G, Khurgin J B, Soref R A 2009 Appl. Phys. Lett. 94 101103Google Scholar
[24] Peng J, Xu X, Tian Y, Wang J, Tang F, Li L 2014 Appl. Phys. Lett. 105 173301Google Scholar
[25] Wu X Y, Liu L L, Yu T C, Yu L, Xie Z Q, Mo Y Q, Xu S P, Ma Y G 2013 J. Mater. Chem. C 1 7020Google Scholar
[26] Meng Y, Wu X Y, Xiong Z Y, Lin C Y, Xiong Z H 2018 Nanotechnology 29 175203Google Scholar
[27] Xu T, Li W, Wu X, Ahmadi M, Xu L 2020 J. Mater. Chem. C 8 6615Google Scholar
[28] Meng Y, Ahmadi M, Wu X Y, Xu T F, Xu L, Xiong Z H, Chen P 2018 Org. Electron. 64 47Google Scholar
[29] Li T, Xiang T, Wang M S, Zhang W, Shi J S, Shao M, Xu T F, Ahmadi M, Wu X Y, Gao Z, Xu L, Chen P 2021 Laser Photonics Rev. doi: 10.1002/lpor.202000495
[30] Jbara A S, Munir J, Ul Haq B, Saeed M A 2020 Appl. Opt. 59 3751Google Scholar
[31] Lee J, Song J, Park J, Yoo S 2021 Adv. Opt. Mater. doi: 10.1002/adom.202002182
[32] Miao Y F, Cheng L, Zou W, Gu L H, Zhang J, Guo Q, Peng Q M, Xu M M, He Y R, Zhang S T, Cao Y, Li R Z, Wang N N, Huang W, Wang J P 2020 Light-Sci. Appl. 9 89Google Scholar
[33] Lu M, Zhang Y, Wang S X, Guo J, Yu W W, Rogach A L 2019 Adv. Funct. Mater. 2019 29 1902008
[34] Yuichiro, Kawamura, Hiroyuki, Sasabe, Chihaya 2005 Jpn. J. Appl. Phys. 44 1160Google Scholar
[35] Zhang J, Zhang L, Cai P, Xue X, Wang M, Zhang J, Tu G 2019 Nano Energy 62 434Google Scholar
[36] Kumar M, Pawar V, Jha P A, Gupta S K, Sinha A S K, Jha P K, Singh P 2019 J. Mater. Sci. -Mater. Electron. 30 6071Google Scholar
[37] Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J 2015 J. Mater. Chem. A 3 19688Google Scholar
[38] Bulovic V, Khalfin V B, Gu G, Burrows P E 1998 Phys. Rev. B 58 3730Google Scholar
[39] He Z F, Liu Y, Yang Z L, Li J, Cui J Y, Chen D, Fang Z S, He H P, Ye Z Z, Zhu H M, Wang N N, Wang J P, Jin Y Z 2019 ACS Photonics 2019 6 587
计量
- 文章访问数: 5584
- PDF下载量: 85
- 被引次数: 0