搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯的Au纳米颗粒增强染料随机激光

沈艳丽 史冰融 吕浩 张帅一 王霞

引用本文:
Citation:

基于石墨烯的Au纳米颗粒增强染料随机激光

沈艳丽, 史冰融, 吕浩, 张帅一, 王霞

Dye random laser enhanced by graphene-based Au nanoparticles

Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia
PDF
HTML
导出引用
  • 石墨烯和纳米颗粒的复合材料具有新颖的光学和电学特性, 被广泛应用于信息传感、光电转换、医学诊断等领域, 具有十分广阔的发展前景. 虽然石墨烯拥有优异的光电性能, 可以实现对随机激光性质的调控, 但目前实现特殊结构的石墨烯与金属纳米结构的复合过程复杂繁琐, 利用石墨烯有效降低随机激光阈值仍存在挑战. 本文利用便捷的化学还原及吸附法制备Au/石墨烯结构, 以染料DCJTB为增益介质, 使用旋涂法制备了均匀的薄膜样品; 研究对比Au纳米颗粒和Au/石墨烯结构随机激光特性, 分析了石墨烯的作用机理. 研究结果表明, Au/石墨烯复合材料透射峰与增益介质的光致发光光谱峰最为接近, 对于染料分子的能级迁跃起到了促进作用. 在相同的增益介质中, 石墨烯的加入不仅使得光子在无序介质中散射频次增加, 促进了增益效果, 而且增强了Au纳米颗粒表面的等离子体共振效应. 二者相互协同, 展现出了优异的随机激光特性, 阈值降低至2.8 μJ/mm2; 对样品重复测量可得样品的激射重复性较强、品质较高. 本研究对促进随机激光应用、实现高性能的光电器件起到了一定的推动作用.
    The graphene and nanoparticles composites have novel optical and electrical properties. They are widely used in the fields of information sensing, photoelectric conversion and medical diagnosis. Graphene has excellent photoelectric properties and can regulate the random laser properties, but the current composite process of graphene with special structures and metal nanostructures is complicated. Thus, there is still a challenge to effectively reducing the threshold of random laser by using graphene. In this work, the Au/graphene structure is prepared by convenient chemical reduction and adsorption method, and the dye DCJTB is used as the gain medium to form the film by spin coating. The random laser properties of Au nanoparticles and Au/graphene structure are studied, and the mechanism of graphene is analyzed. The results show that the transmission peak of Au/graphene composite is near the photoluminescence peak of gain medium, which promotes the energy level transition of dye molecules. With the addition of graphene into the same gain medium, the scattering frequency of photons in the disordered medium increases, resulting in the enhancement of surface plasmon resonance. The scattering effect and the surface plasmon resonance effect cooperate with each other, showing good random laser threshold, which is reduced from 3.4 μJ/mm2 to 2.8 μJ/mm2. Repeatability and high quality of maser are obtained by repetitively measuring the same sample, showing that the lasing sample has good repeatability and high quality. This study plays a certain role in promoting the application of random laser and realizing the high-performance optoelectronic devices.
      通信作者: 吕浩, lvhao@qust.edu.cn ; 王霞, phwangxia@163.com
    • 基金项目: 山东省自然科学基金(批准号: ZR2020QF083)和国家自然科学基金(批准号: 12174211, 12174212)资助的课题.
      Corresponding author: Lü Hao, lvhao@qust.edu.cn ; Wang Xia, phwangxia@163.com
    • Funds: Project supported by the Shandong Natural Science Foundation, China (Grant No. ZR2020QF083) and the National Natural Science Foundation of China (Grant Nos. 12174211, 12174212).
    [1]

    Soest G V, Lagendijk A 2002 Phys. Rev. E 65 047601Google Scholar

    [2]

    Soest G V, Poelwijk F J, Lagendijk A 2002 Phys. Rev. E 65 046603Google Scholar

    [3]

    Wang Y, Duan Z J, Qiu Z, Zhang P, Wu J W, Zhang D K, Xiang T X 2017 Sci. Rep. 7 8385Google Scholar

    [4]

    Chen H, Gao S H, Zhang M J, Zhang J Z, Qiao L J, Wang T, Gao F, Hu X X, Li S C, Zhu Y C 2020 Sensors 20 6122Google Scholar

    [5]

    Wiersma, Diederik S 2008 Nat. Phys. 4 359Google Scholar

    [6]

    Rashidi M, Haggren T, Su Z, Jagadish C, Tan H H 2021 Nano. Lett. 21 3901Google Scholar

    [7]

    Siva G V, Nair R V, Krishnan S R, Vijayan C 2017 Opt. Lett. 42 5002Google Scholar

    [8]

    Haddaw S F, Humud H R, Hamidi S M 2020 Optik 207 164482Google Scholar

    [9]

    Xia J Y, He J J, Xie K, Zhang X J, Hu L, Li Y, Chen X X, Ma J J, Wen J X, Chen J J, Pan Q S, Zhang J X, Vatnik I D, Churkin D, Hu Z J 2019 Annalen der Physik 531 1900066Google Scholar

    [10]

    Li Y X, Xie K, Zhang X J, Hu Z J, Ma J J, Chen X X, Zhang J X, Liu Z M, Chen D 2020 Photonic. Sens. 10 254Google Scholar

    [11]

    Chen Z X, Zhang Y J, Chu S, Sun R, Wang J, Chen J P, Wei B, Zhang X, Zhou W H, Shi Y M 2020 ACS Appl. Mater. Interfaces 12 23323Google Scholar

    [12]

    Yuan F L, Xi Z F, Shi X Y, Li Y C, Li X H, Wang Z N, Fa L Z, Yang S H 2019 Adv. Opt. Mater. 7 1801202Google Scholar

    [13]

    Gayathri R, Monika K, Murukeshan V M, Vijayan C 2021 Opt. Laser. Technol. 139 106959Google Scholar

    [14]

    Shi X Y, Bian Y X, Tong J H, Liu D H, Zhou J, Wang Z N 2020 Opt. Express 28 13576Google Scholar

    [15]

    Wan Y, Deng L G 2019 Opt. Express 27 27103Google Scholar

    [16]

    Shi X Y, Chang Q, Bian Y X, Cui H B, Wang Z N 2019 ACS Photonics 6 2245Google Scholar

    [17]

    Wan Y, An Y, Deng L G 2017 Sci. Rep. 7 16185Google Scholar

    [18]

    Zhang R, Knitter S, Liew S F, Omenetto F G, Reinhard B M, Cao H, Negro D L 2016 Appl. Phys. Lett. 108 011103Google Scholar

    [19]

    Long L, He D, Bao W, Feng M, Chen S 2017 J. Alloys. Compd. 693 876Google Scholar

    [20]

    Zhai T, Zhang X, Pang Z, Su X, Liu H, Feng S, Wang L 2011 Nano. Lett. 11 4295Google Scholar

    [21]

    Zhang N M, Ning S Y, Dai K, Zhang Y F, Wu Y, Yuan F, Zhang F H 2020 Opt. Mater. Express 10 1204Google Scholar

    [22]

    Marini A, Garcia D A F J 2016 Phys. Rev. Lett. 116 217401Google Scholar

    [23]

    Pradip K R, Golam H, Lin H, Liao Y M, Lu C H, Chen K H, Chen L H, Shi W H, Liang C T, Chen Y F 2018 Adv. Opt. Mater. 6 1800382Google Scholar

    [24]

    Lee J, Kim J, Ahmed S R, Zhou H 2014 ACS Appl. Mater. Interfaces 6 21380Google Scholar

    [25]

    Shi J Y, Chan C Y, Pang Y T, Ye W W, Tian F, Jing L Y, Zhang Y, Yang M 2015 Biosens. Bioelectron. 67 595Google Scholar

    [26]

    Lü H, Lan Y Y, Zhao Q L, Wang X, Zhang S Y, Teng L H, Tam W Y 2018 Appl. Phys. B 124 227Google Scholar

    [27]

    Ma H R, Lü H, Wang X 2020 Optik 223 165567Google Scholar

    [28]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim R T, Song Y 2010 Nat. Nanotechnol. 5 574Google Scholar

    [29]

    Shen T, Li Z, Jiang Y, Luo Z G 2019 Funct. Mater. Lett. 12 1950028Google Scholar

    [30]

    Ning S, Dong H, Zhang N, Zhao J, Ding L 2016 Opt. Mater. Express 6 3725Google Scholar

    [31]

    Tao A, Sinsermsuksakul P, Yang P D 2007 Nat. Nanotechnol. 2 435Google Scholar

    [32]

    Zhang Z Y, Liu L H, Wang W, Cao Z J, Martinelli A, Wang E G, Cao Y, Chen J N, Yurgens A, Sun J 2016 Adv. Opt. Mater. 4 2021Google Scholar

  • 图 1  (a) Au纳米颗粒激射样品模型图; (b) Au/石墨烯激射样品模型图

    Fig. 1.  Model of (a) Au NPs and (b) Au/Graphene lasing sample.

    图 2  石墨烯的(a) TEM图、(b) SEM图、(c)红外光谱图和(d)拉曼光谱图

    Fig. 2.  (a) TEM image, (b) SEM image, (c) IR spectra, and (d) Raman spectra of Graphene.

    图 3  (a) Au纳米颗粒的TEM图; (b) Au纳米颗粒的粒径分布统计图; (c) Au/石墨烯的TEM图; (d) Au纳米颗粒和Au/石墨烯的透射光谱以及DCJTB染料光致发光光谱

    Fig. 3.  (a) TEM images of Au NPs; (b) the corresponding size distribution of Au NPs; (c) TEM images of Au/Graphene; (d) transmission spectra of Au NPs, Au/Graphene and photoluminescence spectra of DCJTB.

    图 4  (a) Au纳米颗粒激射样品在不同泵浦能量下的光致发光光谱; (b) 激射峰值与泵浦能量的关系图

    Fig. 4.  (a) Lasing spectra of Au NPs samples at different pump energies; (b) the output intensity of the random lasing as a function of the pump energy.

    图 5  (a) Au/石墨烯激射样品在不同泵浦能量下的光致发光光谱; (b)激射峰强度值与泵浦能量的关系图

    Fig. 5.  (a) Lasing spectra of Au/Graphene samples at different pump energies; (b) the output intensity of the random lasing as a function of the pump energy.

    图 6  Au纳米颗粒和Au/石墨烯激射样品激射峰值和半高宽与泵浦能量的关系图(插图为样品在泵浦下的光学图像)

    Fig. 6.  Intensity and FWHM of lasing peak as a function of the pump energy of Au Nps and Au/Graphene. The inset is the optical image under the pumping.

    图 7  (a) Au纳米颗粒散射模型图; (b) Au/石墨烯复合结构散射模型图

    Fig. 7.  (a) Scattering model diagram of Au NPs; (b) scattering model diagram of Au/Graphene.

  • [1]

    Soest G V, Lagendijk A 2002 Phys. Rev. E 65 047601Google Scholar

    [2]

    Soest G V, Poelwijk F J, Lagendijk A 2002 Phys. Rev. E 65 046603Google Scholar

    [3]

    Wang Y, Duan Z J, Qiu Z, Zhang P, Wu J W, Zhang D K, Xiang T X 2017 Sci. Rep. 7 8385Google Scholar

    [4]

    Chen H, Gao S H, Zhang M J, Zhang J Z, Qiao L J, Wang T, Gao F, Hu X X, Li S C, Zhu Y C 2020 Sensors 20 6122Google Scholar

    [5]

    Wiersma, Diederik S 2008 Nat. Phys. 4 359Google Scholar

    [6]

    Rashidi M, Haggren T, Su Z, Jagadish C, Tan H H 2021 Nano. Lett. 21 3901Google Scholar

    [7]

    Siva G V, Nair R V, Krishnan S R, Vijayan C 2017 Opt. Lett. 42 5002Google Scholar

    [8]

    Haddaw S F, Humud H R, Hamidi S M 2020 Optik 207 164482Google Scholar

    [9]

    Xia J Y, He J J, Xie K, Zhang X J, Hu L, Li Y, Chen X X, Ma J J, Wen J X, Chen J J, Pan Q S, Zhang J X, Vatnik I D, Churkin D, Hu Z J 2019 Annalen der Physik 531 1900066Google Scholar

    [10]

    Li Y X, Xie K, Zhang X J, Hu Z J, Ma J J, Chen X X, Zhang J X, Liu Z M, Chen D 2020 Photonic. Sens. 10 254Google Scholar

    [11]

    Chen Z X, Zhang Y J, Chu S, Sun R, Wang J, Chen J P, Wei B, Zhang X, Zhou W H, Shi Y M 2020 ACS Appl. Mater. Interfaces 12 23323Google Scholar

    [12]

    Yuan F L, Xi Z F, Shi X Y, Li Y C, Li X H, Wang Z N, Fa L Z, Yang S H 2019 Adv. Opt. Mater. 7 1801202Google Scholar

    [13]

    Gayathri R, Monika K, Murukeshan V M, Vijayan C 2021 Opt. Laser. Technol. 139 106959Google Scholar

    [14]

    Shi X Y, Bian Y X, Tong J H, Liu D H, Zhou J, Wang Z N 2020 Opt. Express 28 13576Google Scholar

    [15]

    Wan Y, Deng L G 2019 Opt. Express 27 27103Google Scholar

    [16]

    Shi X Y, Chang Q, Bian Y X, Cui H B, Wang Z N 2019 ACS Photonics 6 2245Google Scholar

    [17]

    Wan Y, An Y, Deng L G 2017 Sci. Rep. 7 16185Google Scholar

    [18]

    Zhang R, Knitter S, Liew S F, Omenetto F G, Reinhard B M, Cao H, Negro D L 2016 Appl. Phys. Lett. 108 011103Google Scholar

    [19]

    Long L, He D, Bao W, Feng M, Chen S 2017 J. Alloys. Compd. 693 876Google Scholar

    [20]

    Zhai T, Zhang X, Pang Z, Su X, Liu H, Feng S, Wang L 2011 Nano. Lett. 11 4295Google Scholar

    [21]

    Zhang N M, Ning S Y, Dai K, Zhang Y F, Wu Y, Yuan F, Zhang F H 2020 Opt. Mater. Express 10 1204Google Scholar

    [22]

    Marini A, Garcia D A F J 2016 Phys. Rev. Lett. 116 217401Google Scholar

    [23]

    Pradip K R, Golam H, Lin H, Liao Y M, Lu C H, Chen K H, Chen L H, Shi W H, Liang C T, Chen Y F 2018 Adv. Opt. Mater. 6 1800382Google Scholar

    [24]

    Lee J, Kim J, Ahmed S R, Zhou H 2014 ACS Appl. Mater. Interfaces 6 21380Google Scholar

    [25]

    Shi J Y, Chan C Y, Pang Y T, Ye W W, Tian F, Jing L Y, Zhang Y, Yang M 2015 Biosens. Bioelectron. 67 595Google Scholar

    [26]

    Lü H, Lan Y Y, Zhao Q L, Wang X, Zhang S Y, Teng L H, Tam W Y 2018 Appl. Phys. B 124 227Google Scholar

    [27]

    Ma H R, Lü H, Wang X 2020 Optik 223 165567Google Scholar

    [28]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim R T, Song Y 2010 Nat. Nanotechnol. 5 574Google Scholar

    [29]

    Shen T, Li Z, Jiang Y, Luo Z G 2019 Funct. Mater. Lett. 12 1950028Google Scholar

    [30]

    Ning S, Dong H, Zhang N, Zhao J, Ding L 2016 Opt. Mater. Express 6 3725Google Scholar

    [31]

    Tao A, Sinsermsuksakul P, Yang P D 2007 Nat. Nanotechnol. 2 435Google Scholar

    [32]

    Zhang Z Y, Liu L H, Wang W, Cao Z J, Martinelli A, Wang E G, Cao Y, Chen J N, Yurgens A, Sun J 2016 Adv. Opt. Mater. 4 2021Google Scholar

  • [1] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应. 物理学报, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [2] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [3] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211397
    [4] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究. 物理学报, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [5] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [6] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [7] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [8] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器. 物理学报, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [9] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [10] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性. 物理学报, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [11] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [12] 邹志宇, 刘晓芳, 曾敏, 杨白, 于荣海, 姜鹤, 唐瑞鹤, 吴章奔. 电场辅助溶解法实现玻璃表面金纳米粒子的形貌控制. 物理学报, 2012, 61(10): 104208. doi: 10.7498/aps.61.104208
    [13] 闫红丹, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling. 基于表面等离子体耦合的高密度金纳米线阵列. 物理学报, 2012, 61(23): 237105. doi: 10.7498/aps.61.237105
    [14] 钟明亮, 李山, 熊祖洪, 张中月. 十字形银纳米结构的表面等离子体光子学性质. 物理学报, 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [15] 郑立思, 冯苗, 詹红兵. 表面修饰基团对金纳米颗粒非线性光学效应的影响研究. 物理学报, 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [16] 郝鹏, 吴一辉, 张平. 纳米金表面修饰与表面等离子体共振传感器的相互作用研究. 物理学报, 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
    [17] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻. 物理学报, 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [18] 李 俊, 张凯旺, 孟利军, 刘文亮, 钟建新. 碳纳米管表面金纳米颗粒的形成与结构转变. 物理学报, 2008, 57(1): 382-386. doi: 10.7498/aps.57.382
    [19] 王慧琴, 刘正东, 王 冰. 同材质颗粒不同填充密度的随机介质中光场的空间分布. 物理学报, 2008, 57(4): 2186-2191. doi: 10.7498/aps.57.2186
    [20] 曾惠丹, 曲士良, 姜雄伟, 邱建荣, 朱从善, 干福熹. 飞秒激光作用下金掺杂硅酸盐玻璃的光致晶化研究. 物理学报, 2003, 52(10): 2525-2529. doi: 10.7498/aps.52.2525
计量
  • 文章访问数:  6052
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 修回日期:  2021-09-22
  • 上网日期:  2022-01-20
  • 刊出日期:  2022-02-05

/

返回文章
返回