-
石墨烯作为二维原子晶体家族的典型代表, 由于其优异的物理与化学特性而受到学术界与工业界的广泛关注. 石墨烯纳米带是宽度仅有几纳米到几十纳米的石墨烯. 纳米带不但继承了石墨烯大部分优异的性能, 而且具备可调控带隙、自旋极化边界态等石墨烯所不具有的新奇物理特性. 这些特性使石墨烯纳米带成为未来探索石墨烯电子学应用所需要重点研究的对象. 利用与石墨烯晶格结构相似的六方氮化硼(h-BN)作为绝缘介质衬底进行石墨烯及石墨烯纳米带制备, 不仅可以有效地保持它们优异的本征性质, 还可以开发出与主流半导体工艺相兼容的电子器件工艺与应用. 本文回顾了近几年h-BN表面石墨烯及石墨烯纳米带研究的发展历程, 详细阐述了最近的材料制备和物性研究的进展, 并对高质量h-BN衬底制备的最新进展进行介绍, 以期为未来实现高质量h-BN表面石墨烯纳米带的规模化制备并最终实现电子器件应用奠定基础. 最后本文对h-BN表面石墨烯及石墨烯纳米带的未来研究方向进行了展望.Graphene, as a typical representative of the two-dimensional material family, has received a wide attention due to its excellent physical and chemical properties. Graphene nanoribbon (GNR) is graphene in a width of several to a few tens of nanometers. GNRs not only inherit most of the excellent properties of graphene, but also have their own specific properties such as band gap opening and spin-polarized edge states, which make it the potential candidate in graphene based electronics in the future. Hexagonal boron nitride (h-BN), which has similar lattice constant with graphene, normally serves as an ideal substrate for graphene and GNRs. It can not only effectively preserve their intrinsic properties, but also benefit for the fabrication of electrical devices via popular semiconductor processes. In this paper, we reviewed the development history of research of graphene and GNRs on h-BN in recent years. The recent progress of physical properties is also discussed. In order to realize the large scale production of graphene and GNRs on h-BN, high quality h-BN multilayer is necessary. In addition, recent progresses about h-BN preparation methods are presented, and the progresses could pave the way for the further application of GNRs in the electronics. Finally, the research direction of graphene and GNRs on h-BN in the future is discussed.
-
Keywords:
- graphene /
- h-BN /
- graphene nanoribbons /
- van der Waals heterostructure
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar
[3] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar
[4] Schwierz F 2010 Nat. Nanotechnol. 5 487Google Scholar
[5] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar
[6] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar
[7] Geim A K 2009 Science 324 1530Google Scholar
[8] Pakdel A, Bando Y, Golberg D 2014 Chem. Soc. Rev. 43 934Google Scholar
[9] Yang H, Gao F, Dai M, Jia D, Zhou Y, Hu P 2017 J. Semi. 38 031004Google Scholar
[10] Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z, Guo W 2016 Small 12 2942Google Scholar
[11] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar
[12] Yankowitz M, Xue J, LeRoy B J 2014 J. Phys. Condens. Matter. 26 303201Google Scholar
[13] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy B J 2012 Nat. Phys. 8 382Google Scholar
[14] Tang S, Wang H, Zhang Y, Li A, Xie H, Liu X, Liu L, Li T, Huang F, Xie X, Jiang M 2013 Sci. Rep. 3 2666Google Scholar
[15] Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy B J 2011 Nat. Mater. 10 282Google Scholar
[16] Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291Google Scholar
[17] Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G 2013 Nat. Mater. 12 792Google Scholar
[18] Tang S, Ding G, Xie X, Chen J, Wang C, Ding X, Huang F, Lu W, Jiang M 2012 Carbon 50 329Google Scholar
[19] Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Muller D A, Park J 2012 Nature 488 627Google Scholar
[20] Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P, Babakhani A, Idrobo J C, Vajtai R, Lou J, Ajayan P M 2013 Nat. Nanotechnol. 8 119Google Scholar
[21] Gong Y, Shi G, Zhang Z, Zhou W, Jung J, Gao W, Ma L, Yang Y, Yang S, You G, Vajtai R, Xu Q, MacDonald A H, Yakobson B I, Lou J, Liu Z, Ajayan P M 2014 Nat. Commun. 5 3193Google Scholar
[22] Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A P, Gu G 2014 Science 343 163Google Scholar
[23] Lu G, Wu T, Yang P, Yang Y, Jin Z, Chen W, Jia S, Wang H, Zhang G, Sun J, Ajayan P M, Lou J, Xie X, Jiang M 2017 Adv. Sci. 4 1700076Google Scholar
[24] Zhang C, Zhao S, Jin C, Koh A L, Zhou Y, Xu W, Li Q, Xiong Q, Peng H, Liu Z 2015 Nat. Commun. 6 6519Google Scholar
[25] Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803Google Scholar
[26] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar
[27] Topsakal M, Sevinçli H, Ciraci S 2008 Appl. Phys. Lett. 92 173118Google Scholar
[28] Wang S, Talirz L, Pignedoli C A, Feng X, Mullen K, Fasel R, Ruffieux P 2016 Nat. Commun. 7 11507Google Scholar
[29] Wu S, Liu B, Shen C, Li S, Huang X, Lu X, Chen P, Wang G, Wang D, Liao M, Zhang J, Zhang T, Wang S, Yang W, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Wang W, Zhang G 2018 Phys. Rev. Lett. 120 216601Google Scholar
[30] Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jap. 65 1920Google Scholar
[31] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872Google Scholar
[32] Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877Google Scholar
[33] Jiao L, Wang X, Diankov G, Wang H, Dai H 2010 Nat. Nanotechnol. 5 321Google Scholar
[34] Han M Y, Ozyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805Google Scholar
[35] Chen Z, Lin Y M, Rooks M J, Avouris P 2007 Phys. E: Low-dim. Sys. Nano 40 228
[36] Yang R, Zhang L, Wang Y, Shi Z, Shi D, Gao H, Wang E, Zhang G 2010 Adv. Mater. 22 4014Google Scholar
[37] Wang X, Dai H 2010 Nat. Chem. 2 661Google Scholar
[38] Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229Google Scholar
[39] Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer W A 2010 Nat. Nanotechnol. 5 727Google Scholar
[40] Nevius M S, Wang F, Mathieu C, Barrett N, Sala A, Mentes T O, Locatelli A, Conrad E H 2014 Nano Lett. 14 6080Google Scholar
[41] Jacobberger R M, Kiraly B, Fortin-Deschenes M, Levesque P L, McElhinny K M, Brady G J, Rojas Delgado R, Singha Roy S, Mannix A, Lagally M G, Evans P G, Desjardins P, Martel R, Hersam M C, Guisinger N P, Arnold M S 2015 Nat. Commun. 6 8006Google Scholar
[42] Jacobberger R M, Arnold M S 2017 ACS Nano 11 8924Google Scholar
[43] Mohamad Yunus R, Miyashita M, Tsuji M, Hibino H, Ago H 2014 Chem. Mater. 26 5215Google Scholar
[44] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K, Fasel R 2010 Nature 466 470Google Scholar
[45] Ruffieux P, Wang S, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mullen K, Fasel R 2016 Nature 531 489Google Scholar
[46] Talirz L, Ruffieux P, Fasel R 2016 Adv. Mater. 28 6222Google Scholar
[47] Groning O, Wang S, Yao X, Pignedoli C A, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Mullen K, Ruffieux P, Fasel R 2018 Nature 560 209Google Scholar
[48] Chen L, He L, Wang H S, Wang H, Tang S, Cong C, Xie H, Li L, Xia H, Li T, Wu T, Zhang D, Deng L, Yu T, Xie X, Jiang M 2017 Nat. Commun. 8 14703Google Scholar
[49] Magda G Z, Jin X, Hagymasi I, Vancso P, Osvath Z, Nemes-Incze P, Hwang C, Biro L P, Tapaszto L 2014 Nature 514 608Google Scholar
[50] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar
[51] Tang S, Wang H, Wang H S, Sun Q, Zhang X, Cong C, Xie H, Liu X, Zhou X, Huang F, Chen X, Yu T, Ding F, Xie X, Jiang M 2015 Nat. Commun. 6 6499Google Scholar
[52] Arjmandi-Tash H, Kalita D, Han Z, Othmen R, Nayak G, Berne C, Landers J, Watanabe K, Taniguchi T, Marty L, Coraux J, Bendiab N, Bouchiat V 2018 J. Phys.: Mater. 1 015003Google Scholar
[53] Cheng T S, Davies A, Summerfield A, Cho Y, Cebula I, Hill R J A, Mellor C J, Khlobystov A N, Taniguchi T, Watanabe K, Beton P H, Foxon C T, Eaves L, Novikov S V 2016 J. Vac. Sci. Tech. B: Nanotech. Micro., Mater. Proc. Meas. Phenom. 34 02l101
[54] Albar J D, Summerfield A, Cheng T S, Davies A, Smith E F, Khlobystov A N, Mellor C J, Taniguchi T, Watanabe K, Foxon C T, Eaves L, Beton P H, Novikov S V 2017 Sci. Rep. 7 6598Google Scholar
[55] Chen L, Wang H, Tang S, He L, Wang H S, Wang X, Xie H, Wu T, Xia H, Li T, Xie X 2017 Nanoscale 9 11475Google Scholar
[56] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598Google Scholar
[57] Woods C R, Britnell L, Eckmann A, Ma R S, Lu J C, Guo H M, Lin X, Yu G L, Cao Y, Gorbachev R V, Kretinin A V, Park J, Ponomarenko L A, Katsnelson M I, Gornostyrev Y N, Watanabe K, Taniguchi T, Casiraghi C, Gao H J, Geim A K, Novoselov K S 2014 Nat. Phys. 10 451Google Scholar
[58] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427Google Scholar
[59] Wang G, Wu S, Zhang T, Chen P, Lu X, Wang S, Wang D, Watanabe K, Taniguchi T, Shi D, Yang R, Zhang G 2016 Appl. Phys. Lett. 109 053101Google Scholar
[60] Lu X, Yang W, Wang S, Wu S, Chen P, Zhang J, Zhao J, Meng J, Xie G, Wang D, Wang G, Zhang T T, Watanabe K, Taniguchi T, Yang R, Shi D, Zhang G 2016 Appl. Phys. Lett. 108 113103Google Scholar
[61] Solozhenko V L, Turkevich V Z, Holzapfel W B 1999 J. Phys. Chem. B 103 2903Google Scholar
[62] Hoffman T B, Clubine B, Zhang Y, Snow K, Edgar J H 2014 J. Crys. Grow. 393 114Google Scholar
[63] Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar
[64] Lu G, Wu T, Yuan Q, Wang H, Wang H, Ding F, Xie X, Jiang M 2015 Nat. Commun. 6 6160Google Scholar
[65] Wang L, Xu X, Zhang L, Qiao R, Wu M, Wang Z, Zhang S, Liang J, Zhang Z, Zhang Z, Chen W, Xie X, Zong J, Shan Y, Guo Y, Willinger M, Wu H, Li Q, Wang W, Gao P, Wu S, Zhang Y, Jiang Y, Yu D, Wang E, Bai X, Wang Z J, Ding F, Liu K 2019 Nature 570 91Google Scholar
[66] Ismach A, Chou H, Ferrer D A, Wu Y, McDonnell S, Floresca H C, Covacevich A, Pope C, Piner R, Kim M J, Wallace R M, Colombo L, Ruoff R S 2012 ACS Nano 6 6378Google Scholar
[67] Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Dresselhaus M, Palacios T, Kong J 2012 ACS Nano 6 8583Google Scholar
[68] Yin J, Yu J, Li X, Li J, Zhou J, Zhang Z, Guo W 2015 Small 11 4497Google Scholar
[69] Song X, Gao J, Nie Y, Gao T, Sun J, Ma D, Li Q, Chen Y, Jin C, Bachmatiuk A, Rümmeli M H, Ding F, Zhang Y, Liu Z 2015 Nano Res. 8 3164Google Scholar
[70] Caneva S, Weatherup R S, Bayer B C, Brennan B, Spencer S J, Mingard K, Cabrero-Vilatela A, Baehtz C, Pollard A J, Hofmann S 2015 Nano Lett. 15 1867Google Scholar
[71] Lee J S, Choi S H, Yun S J, Kim Y I, Boandoh S, Park J H, Shin B G, Ko H, Lee S H, Kim Y M, Lee Y H, Kim K K, Kim S M 2018 Science 362 817Google Scholar
-
图 2 h-BN表面石墨烯制备 (a) h-BN表面点缺陷处形核得到的石墨烯晶畴[18]; (b) h-BN表面台阶处形核得到的石墨烯条带; (c) h-BN表面气相催化石墨烯生长示意图; (d)不同气相催化剂对石墨烯生长的加速作用[51]; (e)扶手椅型边界的石墨烯的AFM摩擦力图像; (f)锯齿型边界的石墨烯的AFM摩擦力图像[55]
Fig. 2. Synthesis of high-quality graphene on h-BN: (a) Graphene domains nucleated at defects of h-BN surface[18]; (b) graphene ribbon grown at the step-edge of h-BN; (c) schematic of the gaseous catalyst-assisted graphene growth on h-BN[51]; (d) the growth duration dependence of the domain size for graphene in the presence of silane or germane gaseous catalysts; (e), (f) AFM friction images of grapheneedge alongarmchair (e) and zigzag (f) direction[55].
图 3 h-BN表面石墨烯制备的不同方案 (a), (b)等离子体辅助CVD方法制备高质量石墨烯[17]; (c)−(e)采用分子束外延法实现h-BN表面石墨烯晶畴制备[54]; (f)通过金属催化在h-BN表面制备石墨烯[52]
Fig. 3. Different methods for the synthesis of graphene on h-BN: (a), (b) Synthesis of high-quality graphene on h-BN by plasma enhanced CVD[17]; (c)−(e) synthesis of graphene on h-BN by molecular beam epitaxy[54]; (f) synthesis of graphene on h-BN by proximity-catalytic process[52].
图 4 石墨烯/h-BN异质结物理性质 (a)摩尔条纹示意图[12]; (b)石墨烯与h-BN之间不同晶格常数差异和偏转角对摩尔条纹的影响关系[14]; (c)摩尔条纹图像及超晶格狄拉克点[13]; (d)霍夫斯塔特蝴蝶效应[56]; (e)公度-非公度转变[57]
Fig. 4. Physical properties of graphene/h-BN heterostructure: (a) Schematic of Moiré pattern[12]; (b) Moiré pattern wavelength and its rotation angle with respect to the h-BN as a function of mis-orientation angle between graphene and h-BN[14]; (c) the existence of moiré pattern and superlattice Dirac points[13]; (d) hofstadter butterfly effect[56]; (e) commensurate-incommensurate transitions[57].
图 5 h-BN石墨烯纳米带的制备方法 (a)氢等离子各向异性刻蚀法制备石墨烯纳米带[59]; (b), (c) h-BN台阶外延生长的扶手椅型边界(b)和锯齿型边界(c)的石墨烯纳米带[55]; (d)−(i) h-BN表面模板法制备石墨烯纳米带: (d) h-BN的平整表面, (e) h-BN表面镍金属颗粒辅助刻蚀出的纳米沟槽, (f) h-BN纳米沟槽内模板法制备石墨烯纳米带, (g)−(i)与图(d)−(f)相对应的AFM摩擦力图像
Fig. 5. Different methods for the fabrication of GNRs on h-BN. (a) Fabrication of GNRs on h-BN by anisotropic etching[59]; (b), (c) GNRs with AC-oriented (b) and ZZ-oriented (c) edges are grown from oriented step-edges on h-BN[55]; (d)−(i) formation of GNRs in h-BN trenches: (d) Smooth surface of the h-BN; (e) synthesis of nano-trenches on h-BN by Ni particle-assisted etching; (f) in-plane epitaxial template growth of GNRs via CVD; (g)−(i) AFM friction images corresponding to the schematics shown in (d)−(f).
图 6 (a)−(c)模板法制备的锯齿型石墨烯纳米带的输运特性: (a)宽度为5 nm的石墨烯纳米带在不同温度条件下电导随背栅电压的转移曲线, (b)实验提取得到的石墨烯纳米带带隙与宽度的变化关系[48], (c)温度为2 K时, 宽度为9 nm的锯齿型石墨烯纳米带在不同磁场条件下电导随背栅电压的转移曲线; (d)氢等离子体各向异性刻蚀法制备的约68 nm宽的锯齿型石墨烯纳米带不同磁场条件下的转移曲线[29]
Fig. 6. (a)−(c) Electronic transport through embedded ZGNR devices: (a) Conductance (G) of a typical ZGNR device with a width of ~5 nm as a function of the back gate voltage (Vgate) at different temperatures, (b) band gap Eg extracted from experimentaldata for ZGNRs versus their width (w)[48], (c) transfer curves of a ~9 nm ZGNR sample at different magnetic field; (d) thetypical transfer curves at several B from a ZGNR/h-BN device with a width of ~68 nm fabricated by hydrogen-plasma-etching (~3 kΩ contactresistance was subtracted)[29].
图 8 CVD方法制备h-BN晶畴 (a)在铜镍合金上生长h-BN的示意图; (b)−(e) 分别对应着铜镍合金衬底上不同生长时间下h-BN的扫描电镜图像, 标尺为20 μm, 图(b)中插图的标尺是2 μm[64]; (f)铜(110)面h-BN形核及生长示意图; (g)铜(110)面生长的h-BN晶畴具有相同取向, 插图是得到的均匀h-BN连续膜[65]
Fig. 8. Synthesis of h-BN by CVD: (a) Schematic illustration showing the procedure of h-BN growth; (b)−(e) SEM images of h-BN grains grown on Cu-Ni alloy for 10, 30, 60 and 90 min, respectively, the scale bars are 20 μm, and in inset in (b) is 2 μm[64]; (f) schematic diagrams of unidirectional growth of h-BN domains grown on Cu(110) surface; (g) SEM image of unidirectionally aligned h-BN domains on Cu(110), inset is the as-grown h-BN films[65].
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar
[3] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar
[4] Schwierz F 2010 Nat. Nanotechnol. 5 487Google Scholar
[5] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar
[6] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar
[7] Geim A K 2009 Science 324 1530Google Scholar
[8] Pakdel A, Bando Y, Golberg D 2014 Chem. Soc. Rev. 43 934Google Scholar
[9] Yang H, Gao F, Dai M, Jia D, Zhou Y, Hu P 2017 J. Semi. 38 031004Google Scholar
[10] Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z, Guo W 2016 Small 12 2942Google Scholar
[11] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar
[12] Yankowitz M, Xue J, LeRoy B J 2014 J. Phys. Condens. Matter. 26 303201Google Scholar
[13] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy B J 2012 Nat. Phys. 8 382Google Scholar
[14] Tang S, Wang H, Zhang Y, Li A, Xie H, Liu X, Liu L, Li T, Huang F, Xie X, Jiang M 2013 Sci. Rep. 3 2666Google Scholar
[15] Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy B J 2011 Nat. Mater. 10 282Google Scholar
[16] Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291Google Scholar
[17] Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G 2013 Nat. Mater. 12 792Google Scholar
[18] Tang S, Ding G, Xie X, Chen J, Wang C, Ding X, Huang F, Lu W, Jiang M 2012 Carbon 50 329Google Scholar
[19] Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Muller D A, Park J 2012 Nature 488 627Google Scholar
[20] Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P, Babakhani A, Idrobo J C, Vajtai R, Lou J, Ajayan P M 2013 Nat. Nanotechnol. 8 119Google Scholar
[21] Gong Y, Shi G, Zhang Z, Zhou W, Jung J, Gao W, Ma L, Yang Y, Yang S, You G, Vajtai R, Xu Q, MacDonald A H, Yakobson B I, Lou J, Liu Z, Ajayan P M 2014 Nat. Commun. 5 3193Google Scholar
[22] Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A P, Gu G 2014 Science 343 163Google Scholar
[23] Lu G, Wu T, Yang P, Yang Y, Jin Z, Chen W, Jia S, Wang H, Zhang G, Sun J, Ajayan P M, Lou J, Xie X, Jiang M 2017 Adv. Sci. 4 1700076Google Scholar
[24] Zhang C, Zhao S, Jin C, Koh A L, Zhou Y, Xu W, Li Q, Xiong Q, Peng H, Liu Z 2015 Nat. Commun. 6 6519Google Scholar
[25] Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803Google Scholar
[26] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar
[27] Topsakal M, Sevinçli H, Ciraci S 2008 Appl. Phys. Lett. 92 173118Google Scholar
[28] Wang S, Talirz L, Pignedoli C A, Feng X, Mullen K, Fasel R, Ruffieux P 2016 Nat. Commun. 7 11507Google Scholar
[29] Wu S, Liu B, Shen C, Li S, Huang X, Lu X, Chen P, Wang G, Wang D, Liao M, Zhang J, Zhang T, Wang S, Yang W, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Wang W, Zhang G 2018 Phys. Rev. Lett. 120 216601Google Scholar
[30] Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jap. 65 1920Google Scholar
[31] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872Google Scholar
[32] Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877Google Scholar
[33] Jiao L, Wang X, Diankov G, Wang H, Dai H 2010 Nat. Nanotechnol. 5 321Google Scholar
[34] Han M Y, Ozyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805Google Scholar
[35] Chen Z, Lin Y M, Rooks M J, Avouris P 2007 Phys. E: Low-dim. Sys. Nano 40 228
[36] Yang R, Zhang L, Wang Y, Shi Z, Shi D, Gao H, Wang E, Zhang G 2010 Adv. Mater. 22 4014Google Scholar
[37] Wang X, Dai H 2010 Nat. Chem. 2 661Google Scholar
[38] Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229Google Scholar
[39] Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer W A 2010 Nat. Nanotechnol. 5 727Google Scholar
[40] Nevius M S, Wang F, Mathieu C, Barrett N, Sala A, Mentes T O, Locatelli A, Conrad E H 2014 Nano Lett. 14 6080Google Scholar
[41] Jacobberger R M, Kiraly B, Fortin-Deschenes M, Levesque P L, McElhinny K M, Brady G J, Rojas Delgado R, Singha Roy S, Mannix A, Lagally M G, Evans P G, Desjardins P, Martel R, Hersam M C, Guisinger N P, Arnold M S 2015 Nat. Commun. 6 8006Google Scholar
[42] Jacobberger R M, Arnold M S 2017 ACS Nano 11 8924Google Scholar
[43] Mohamad Yunus R, Miyashita M, Tsuji M, Hibino H, Ago H 2014 Chem. Mater. 26 5215Google Scholar
[44] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K, Fasel R 2010 Nature 466 470Google Scholar
[45] Ruffieux P, Wang S, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mullen K, Fasel R 2016 Nature 531 489Google Scholar
[46] Talirz L, Ruffieux P, Fasel R 2016 Adv. Mater. 28 6222Google Scholar
[47] Groning O, Wang S, Yao X, Pignedoli C A, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Mullen K, Ruffieux P, Fasel R 2018 Nature 560 209Google Scholar
[48] Chen L, He L, Wang H S, Wang H, Tang S, Cong C, Xie H, Li L, Xia H, Li T, Wu T, Zhang D, Deng L, Yu T, Xie X, Jiang M 2017 Nat. Commun. 8 14703Google Scholar
[49] Magda G Z, Jin X, Hagymasi I, Vancso P, Osvath Z, Nemes-Incze P, Hwang C, Biro L P, Tapaszto L 2014 Nature 514 608Google Scholar
[50] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar
[51] Tang S, Wang H, Wang H S, Sun Q, Zhang X, Cong C, Xie H, Liu X, Zhou X, Huang F, Chen X, Yu T, Ding F, Xie X, Jiang M 2015 Nat. Commun. 6 6499Google Scholar
[52] Arjmandi-Tash H, Kalita D, Han Z, Othmen R, Nayak G, Berne C, Landers J, Watanabe K, Taniguchi T, Marty L, Coraux J, Bendiab N, Bouchiat V 2018 J. Phys.: Mater. 1 015003Google Scholar
[53] Cheng T S, Davies A, Summerfield A, Cho Y, Cebula I, Hill R J A, Mellor C J, Khlobystov A N, Taniguchi T, Watanabe K, Beton P H, Foxon C T, Eaves L, Novikov S V 2016 J. Vac. Sci. Tech. B: Nanotech. Micro., Mater. Proc. Meas. Phenom. 34 02l101
[54] Albar J D, Summerfield A, Cheng T S, Davies A, Smith E F, Khlobystov A N, Mellor C J, Taniguchi T, Watanabe K, Foxon C T, Eaves L, Beton P H, Novikov S V 2017 Sci. Rep. 7 6598Google Scholar
[55] Chen L, Wang H, Tang S, He L, Wang H S, Wang X, Xie H, Wu T, Xia H, Li T, Xie X 2017 Nanoscale 9 11475Google Scholar
[56] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598Google Scholar
[57] Woods C R, Britnell L, Eckmann A, Ma R S, Lu J C, Guo H M, Lin X, Yu G L, Cao Y, Gorbachev R V, Kretinin A V, Park J, Ponomarenko L A, Katsnelson M I, Gornostyrev Y N, Watanabe K, Taniguchi T, Casiraghi C, Gao H J, Geim A K, Novoselov K S 2014 Nat. Phys. 10 451Google Scholar
[58] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427Google Scholar
[59] Wang G, Wu S, Zhang T, Chen P, Lu X, Wang S, Wang D, Watanabe K, Taniguchi T, Shi D, Yang R, Zhang G 2016 Appl. Phys. Lett. 109 053101Google Scholar
[60] Lu X, Yang W, Wang S, Wu S, Chen P, Zhang J, Zhao J, Meng J, Xie G, Wang D, Wang G, Zhang T T, Watanabe K, Taniguchi T, Yang R, Shi D, Zhang G 2016 Appl. Phys. Lett. 108 113103Google Scholar
[61] Solozhenko V L, Turkevich V Z, Holzapfel W B 1999 J. Phys. Chem. B 103 2903Google Scholar
[62] Hoffman T B, Clubine B, Zhang Y, Snow K, Edgar J H 2014 J. Crys. Grow. 393 114Google Scholar
[63] Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar
[64] Lu G, Wu T, Yuan Q, Wang H, Wang H, Ding F, Xie X, Jiang M 2015 Nat. Commun. 6 6160Google Scholar
[65] Wang L, Xu X, Zhang L, Qiao R, Wu M, Wang Z, Zhang S, Liang J, Zhang Z, Zhang Z, Chen W, Xie X, Zong J, Shan Y, Guo Y, Willinger M, Wu H, Li Q, Wang W, Gao P, Wu S, Zhang Y, Jiang Y, Yu D, Wang E, Bai X, Wang Z J, Ding F, Liu K 2019 Nature 570 91Google Scholar
[66] Ismach A, Chou H, Ferrer D A, Wu Y, McDonnell S, Floresca H C, Covacevich A, Pope C, Piner R, Kim M J, Wallace R M, Colombo L, Ruoff R S 2012 ACS Nano 6 6378Google Scholar
[67] Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Dresselhaus M, Palacios T, Kong J 2012 ACS Nano 6 8583Google Scholar
[68] Yin J, Yu J, Li X, Li J, Zhou J, Zhang Z, Guo W 2015 Small 11 4497Google Scholar
[69] Song X, Gao J, Nie Y, Gao T, Sun J, Ma D, Li Q, Chen Y, Jin C, Bachmatiuk A, Rümmeli M H, Ding F, Zhang Y, Liu Z 2015 Nano Res. 8 3164Google Scholar
[70] Caneva S, Weatherup R S, Bayer B C, Brennan B, Spencer S J, Mingard K, Cabrero-Vilatela A, Baehtz C, Pollard A J, Hofmann S 2015 Nano Lett. 15 1867Google Scholar
[71] Lee J S, Choi S H, Yun S J, Kim Y I, Boandoh S, Park J H, Shin B G, Ko H, Lee S H, Kim Y M, Lee Y H, Kim K K, Kim S M 2018 Science 362 817Google Scholar
计量
- 文章访问数: 15860
- PDF下载量: 264
- 被引次数: 0