-
Chromatic stability and purity cannot be acquired easily in the top-emitting white organic light-emitting diode (TWOLED) due to its special device structure with metal film as both anode and cathode. Blue/red/blue emission layers are utilized to optimize the chromaticity and to improve the stability. Then step-doping is introduced into the red emission layer to further improve the device stability. In order to explain the mechanism of the improvement in chromaticity stability, effects of step-doping on the device performances are analyzed in detail. Experimental results refleal that the built-in electric field induced by the step-doping changes the carrier drifting and exciton recombination in emission layers. When the doping concentration gradually increases from the anode side to the cathode side (increasing step-doping), the built-in electric field is facilitated to suppress the electron drafting and the exciton diffusing, which helps control the exciton recombination zone. Color stability can be improved in the TWOLED with increasing step-doping. Additionally, as an important factor influencing the emission spectra of TWOLEDs, microcavity resonance is calculated and used to explain the variation of spectra induced by device structural changes.
-
Keywords:
- organic light-emitting diode /
- top-emitting /
- step-doping /
- microcavity effect
[1] Chen S, Deng L, Xie J, Peng L, Xie L, Fan Q, Huang W 2010 Adv. Mater. 22 5227
[2] Wu Z J, Guo H Q, Wang J X 2011 Curr. Appl. Phys. 11 162
[3] Chen S, Wu Q, Kong M, Zhao X, Yu Z, Jia P, Huang W 2013 J. Mater. Chem. C 1 3508
[4] Yang S H, Huang S F, Chang C H, Chung C H 2011 Journal of Luminescence 131 2106
[5] Shao Y, Yang Y 2005 Appl. Phys. Lett. 86 073510
[6] Deshpande R S, Bulovic V, Forrest S R 1999 Appl. Phys. Lett. 75 888
[7] Zhang S, Yue S, Wu Q, Zhang Z, Chen Y, Wang X, Liu Z, Xie G, Q. Xue, Qu D, Zhao Y, Liu S 2013 Org. Electron. 14 2014
[8] Deng L, Shi H, Meng X, Chen S, Zhou H, Xu Y, Li X, Wang L, B. Liu, Huang W 2014 Acs Applied Materials & Interfaces 6 5273
[9] Deng L, Chen S, Xie J, Qian Y, Xie L, Shi N, Liu B, Huang W 2013 Org. Electron. 14 423
[10] Thomschke M, Reineke S, Lussem B, Leo K 2012 Nano. Lett. 12 424
[11] Chen S F, Shao M, Guo X, Qian Y, Shi N E, Xie L H, Yang Y, W. Huang 2012 Acta Phys. Sin. Ch. Ed 61 087801
[12] Shi H, Deng L, Chen S, Xu Y, Zhao X, Cheng F, Huang W 2014 AIP Advances 4 0471101
[13] Wang Q, Ho C L, Zhao Y B, Ma D G, Wong W Y, Wang L X 2010 Org. Electron. 11 238
[14] Yang Y, Peng T, Ye K Q, Wu Y, Liu Y, Wang Y 2011 Org. Electron. 12 29
[15] Lukosz W 1979 J. Opt. Soc. Am. A 69 1495
[16] Deng L L, Chen S F, Huang W, Liu B 2010 Led and Display Technologies 78 52131
-
[1] Chen S, Deng L, Xie J, Peng L, Xie L, Fan Q, Huang W 2010 Adv. Mater. 22 5227
[2] Wu Z J, Guo H Q, Wang J X 2011 Curr. Appl. Phys. 11 162
[3] Chen S, Wu Q, Kong M, Zhao X, Yu Z, Jia P, Huang W 2013 J. Mater. Chem. C 1 3508
[4] Yang S H, Huang S F, Chang C H, Chung C H 2011 Journal of Luminescence 131 2106
[5] Shao Y, Yang Y 2005 Appl. Phys. Lett. 86 073510
[6] Deshpande R S, Bulovic V, Forrest S R 1999 Appl. Phys. Lett. 75 888
[7] Zhang S, Yue S, Wu Q, Zhang Z, Chen Y, Wang X, Liu Z, Xie G, Q. Xue, Qu D, Zhao Y, Liu S 2013 Org. Electron. 14 2014
[8] Deng L, Shi H, Meng X, Chen S, Zhou H, Xu Y, Li X, Wang L, B. Liu, Huang W 2014 Acs Applied Materials & Interfaces 6 5273
[9] Deng L, Chen S, Xie J, Qian Y, Xie L, Shi N, Liu B, Huang W 2013 Org. Electron. 14 423
[10] Thomschke M, Reineke S, Lussem B, Leo K 2012 Nano. Lett. 12 424
[11] Chen S F, Shao M, Guo X, Qian Y, Shi N E, Xie L H, Yang Y, W. Huang 2012 Acta Phys. Sin. Ch. Ed 61 087801
[12] Shi H, Deng L, Chen S, Xu Y, Zhao X, Cheng F, Huang W 2014 AIP Advances 4 0471101
[13] Wang Q, Ho C L, Zhao Y B, Ma D G, Wong W Y, Wang L X 2010 Org. Electron. 11 238
[14] Yang Y, Peng T, Ye K Q, Wu Y, Liu Y, Wang Y 2011 Org. Electron. 12 29
[15] Lukosz W 1979 J. Opt. Soc. Am. A 69 1495
[16] Deng L L, Chen S F, Huang W, Liu B 2010 Led and Display Technologies 78 52131
计量
- 文章访问数: 6130
- PDF下载量: 659
- 被引次数: 0