搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ZnS增透膜的顶发射白光有机发光二极管

陈淑芬 邵茗 郭旭 钱妍 石乃恩 解令海 杨洋 黄维

引用本文:
Citation:

基于ZnS增透膜的顶发射白光有机发光二极管

陈淑芬, 邵茗, 郭旭, 钱妍, 石乃恩, 解令海, 杨洋, 黄维

Top-emitting white organic light-emitting diodes based on a ZnS light outcoupling layer

Chen Shu-Fen, Shao Ming, Guo Xu, Qian Yan, Shi Nai-En, Xie Ling-Hai, Yang Yang, Huang Wei
PDF
导出引用
  • 顶发射白光有机发光二极管(TEWOLED)在白光照明和全彩显示中有着良好的应用前景, 克服顶发射器件中的微腔效应是制备光电性能良好的TEWOLED的前提. 使用具有高折射率的ZnS作为增透膜改善金属阴极在蓝光波段的透射率,降低其反射性, 从而有效抑制了微腔的影响.同时利用转移矩阵理论和宽角干涉方法分别对阴极结构和 蓝光发光层位置进行了优化,最终获得了高效、色纯度良好、色度随视角变化小的TEWOLED. 最高亮度和效率分别达到9213 cd/m2和3 cd/A,色坐标位于白光区且接近白光等能点, 同时具有良好的视角稳定性,在060范围内色坐标仅变化(0.02, 0).
    Top-emitting white organic light-emitting diode (TEWOLED) has potential applications in lighting and full color displays. Microcavity effect in TEWOLED restrains the realization of the white emission with excellent optical and electric performances. In this paper, a ZnS film with a high refractive index used as a light outcoupling layer is introduced into the metal cathode to enhance its transmittivity to a maximal value in the blue light wavelength region. In addition, transfer matrix theory is utilized to optimize the thicknesses of the cathode and the ZnS outcoupling layer and the wide-angle interference is used to design the position of the blue emission layer inside the organic light-emitting diode. Based on the above work, the white light with relatively high luminous efficiency, good color purity, and small CIE coordinate change is acquired. The corresponding luminance and current efficicency are 9213 cd/m2 and 3 cd/A, respectively. The CIE coordinates belong to the white emission and are near the white light equal-energy point. The white emission also shows stable spectra with respect to the observation angle, with a limited CIE coordinate change of (0.02, 0) for a large observation angle change from 0 to 60.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2009CB930600)、 国家自然科学基金(批准号: 60907047, 60977024, 21101095, 20974046, 21003076, 51173081, 61136003)、 高等学校博士学科点专项科研基金(批准号: 20093223120003)、 江苏省自然科学基金(批准号: BK2009423)、江苏省高等学校自然科学基金(批准号: SJ209003, 09KJB150009, 10KJB510013, TJ209035)、江苏省青蓝工程 和南京邮电大学攀登计划(批准号: NY210015)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2009CB930600), the National Natural Science Foundation of China (Grant Nos. 60907047, 60977024, 21101095, 20974046, 21003076, 51173081, 61136003), the Specialized Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20093223120003), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2009423), the Natural Science Foundation of Institution of Higher Education of Jiangsu Province, China (Grant Nos. SJ209003, 09KJB150009, 10KJB510013, TJ209035), the Qing Lan Program of Jiangsu Province, China, and the Climbing Program of Nanjing University of Posts and Telecommunications, China (Grant No. NY210015).
    [1]

    Tang C W, Van Slyke S A 1987 Appl. Phys. Lett. 51 913

    [2]

    Burroughes J H 1990 Nature 347 539

    [3]

    Gustufsson G, Cao Y, Treacy G M, Klavetter F, Colaneri N, Heeger A J 1992 Nature 357 447

    [4]

    Cao Y, Treacy G M, Smith P, Heeger A J 1992 Appl. Phys. Lett. 60 2711

    [5]

    Gu G, Shen Z, Burrows P E, Forrest S R 1997 Adv. Mater. 9 725

    [6]

    Yang Y, Chen S F, Xie J, Chen C Y, Shao M, Guo X, Huang W 2011 Acta Phys. Sin. 60 047809 (in Chinese) [杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维 2011 物理学报 60 047809]

    [7]

    Xu X M, Peng J C, Li H J, Qu S, Zhao C J, Luo X H 2004 Acta Phys. Sin. 53 286 (in Chinese) [许雪梅, 彭景翠, 李宏建, 瞿述, 赵楚军, 罗小华 2004 物理学报 53 286]

    [8]

    Kido J, Shionoya H, Nagai K 1995 Appl. Phys. Lett. 67 2281

    [9]

    Feng J, Li F, Gao W B, Liu S Y, Liu Y, Wang Y 2001 Appl. Phys. Lett. 78 3947

    [10]

    Chen S F, Wu Z J, Zhao Y, Li C N, Hou J Y, Liu S Y 2005 Org. Electron. 6 111

    [11]

    Dodabalapur A, Rothberg L J, Miller T M 1994 Appl. Phys. Lett. 65 2308

    [12]

    Parthasarathy G, Gu G, Forrest S R 1999 Adv. Mater. 11 907

    [13]

    Riel H, Karg S, Beierlein T, Ruhstaller B, Rie\upbeta W 2003 Appl. Phys. Lett. 82 466

    [14]

    Dobbertin T, Kroeger M, Heithecker D, Schneider D, Metzdorf D, Neuner H, Becker E, Johannes H H, Kowalsky W 2003 Appl. Phys. Lett. 82 284

    [15]

    Chen S F, Deng L L, Xie J, Peng L, Xie L H, Fan Q L, Huang W 2010 Adv. Mater. 22 5227

    [16]

    Kanno H, Sun Y R, Forrest S R 2005 Appl. Phys. Lett. 86 263502

    [17]

    Hsu S F, Lee C C, Hwang S W, Chen C H 2005 Appl. Phys. Lett. 86 253508

    [18]

    Zhu X L, Sun J X, Yu X M, Wong M, Kwok H S 2007 Jpn. J. Appl. Phys. 46 4054

    [19]

    Lee M T, Tseng M R 2008 Curr. Appl. Phys. 8 616

    [20]

    Kim M S, Jeon C H, Lim J T, Yeom G Y 2008 Thin Solid Films 11 3590

    [21]

    Ji W Y, Zhang L T, Gao R X, Zhang L M, Xie W F, Zhang H Z, Li B 2008 Opt. Express 16 15489

    [22]

    Thomschke M, Nitsche R, Furno M, Leo K 2009 Appl. Phys. Lett. 94 083303

    [23]

    Ji W Y, Zhang L T, Zhang T Y, Xie W F, Zhang H Z 2010 Org. Electron. 11 202

    [24]

    Xie G H, Zhang Z S, Xue Q, Zhang S M, Zhao L, Luo Y, Chen P, Quan B F, Zhao Y, Liu S Y 2010 Org. Electron. 11 2055

    [25]

    Chen S M, Kwok H S 2011 Org. Electron. 12 677

    [26]

    Ji W Y, Zhao J L, Sun Z C, Xie W F 2011 Org. Electron. 12 1137

    [27]

    Ma J, Piao X C, Liu J, Zhang L T, Zhang T Y, Liu M, Li T, Xie W F, Cui H N 2011 Org. Electron. 12 923

    [28]

    Chen S F, Xie W F, Meng Y L, Chen P, Zhao Y, Liu S Y 2008 J. Appl. Phys. 103 054506

    [29]

    Sun Y, Noel C, Hiroshi K, Biwu M, Thompson M E, Forrest S R 2006 Nature 440 908

    [30]

    Xie J, Chen C Y, Chen S F, Yang Y, Shao M, Guo X, Fan Q L, Huang W 2011 Org. Electron. 12 322

  • [1]

    Tang C W, Van Slyke S A 1987 Appl. Phys. Lett. 51 913

    [2]

    Burroughes J H 1990 Nature 347 539

    [3]

    Gustufsson G, Cao Y, Treacy G M, Klavetter F, Colaneri N, Heeger A J 1992 Nature 357 447

    [4]

    Cao Y, Treacy G M, Smith P, Heeger A J 1992 Appl. Phys. Lett. 60 2711

    [5]

    Gu G, Shen Z, Burrows P E, Forrest S R 1997 Adv. Mater. 9 725

    [6]

    Yang Y, Chen S F, Xie J, Chen C Y, Shao M, Guo X, Huang W 2011 Acta Phys. Sin. 60 047809 (in Chinese) [杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维 2011 物理学报 60 047809]

    [7]

    Xu X M, Peng J C, Li H J, Qu S, Zhao C J, Luo X H 2004 Acta Phys. Sin. 53 286 (in Chinese) [许雪梅, 彭景翠, 李宏建, 瞿述, 赵楚军, 罗小华 2004 物理学报 53 286]

    [8]

    Kido J, Shionoya H, Nagai K 1995 Appl. Phys. Lett. 67 2281

    [9]

    Feng J, Li F, Gao W B, Liu S Y, Liu Y, Wang Y 2001 Appl. Phys. Lett. 78 3947

    [10]

    Chen S F, Wu Z J, Zhao Y, Li C N, Hou J Y, Liu S Y 2005 Org. Electron. 6 111

    [11]

    Dodabalapur A, Rothberg L J, Miller T M 1994 Appl. Phys. Lett. 65 2308

    [12]

    Parthasarathy G, Gu G, Forrest S R 1999 Adv. Mater. 11 907

    [13]

    Riel H, Karg S, Beierlein T, Ruhstaller B, Rie\upbeta W 2003 Appl. Phys. Lett. 82 466

    [14]

    Dobbertin T, Kroeger M, Heithecker D, Schneider D, Metzdorf D, Neuner H, Becker E, Johannes H H, Kowalsky W 2003 Appl. Phys. Lett. 82 284

    [15]

    Chen S F, Deng L L, Xie J, Peng L, Xie L H, Fan Q L, Huang W 2010 Adv. Mater. 22 5227

    [16]

    Kanno H, Sun Y R, Forrest S R 2005 Appl. Phys. Lett. 86 263502

    [17]

    Hsu S F, Lee C C, Hwang S W, Chen C H 2005 Appl. Phys. Lett. 86 253508

    [18]

    Zhu X L, Sun J X, Yu X M, Wong M, Kwok H S 2007 Jpn. J. Appl. Phys. 46 4054

    [19]

    Lee M T, Tseng M R 2008 Curr. Appl. Phys. 8 616

    [20]

    Kim M S, Jeon C H, Lim J T, Yeom G Y 2008 Thin Solid Films 11 3590

    [21]

    Ji W Y, Zhang L T, Gao R X, Zhang L M, Xie W F, Zhang H Z, Li B 2008 Opt. Express 16 15489

    [22]

    Thomschke M, Nitsche R, Furno M, Leo K 2009 Appl. Phys. Lett. 94 083303

    [23]

    Ji W Y, Zhang L T, Zhang T Y, Xie W F, Zhang H Z 2010 Org. Electron. 11 202

    [24]

    Xie G H, Zhang Z S, Xue Q, Zhang S M, Zhao L, Luo Y, Chen P, Quan B F, Zhao Y, Liu S Y 2010 Org. Electron. 11 2055

    [25]

    Chen S M, Kwok H S 2011 Org. Electron. 12 677

    [26]

    Ji W Y, Zhao J L, Sun Z C, Xie W F 2011 Org. Electron. 12 1137

    [27]

    Ma J, Piao X C, Liu J, Zhang L T, Zhang T Y, Liu M, Li T, Xie W F, Cui H N 2011 Org. Electron. 12 923

    [28]

    Chen S F, Xie W F, Meng Y L, Chen P, Zhao Y, Liu S Y 2008 J. Appl. Phys. 103 054506

    [29]

    Sun Y, Noel C, Hiroshi K, Biwu M, Thompson M E, Forrest S R 2006 Nature 440 908

    [30]

    Xie J, Chen C Y, Chen S F, Yang Y, Shao M, Guo X, Fan Q L, Huang W 2011 Org. Electron. 12 322

  • [1] 王辉耀, 魏福贤, 吴雨廷, 彭腾, 刘俊宏, 汪波, 熊祖洪. 激基复合物有机发光二极管中平衡载流子增强电荷转移态的反向系间窜越过程. 物理学报, 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [2] 张娟, 焦志强, 闫华杰, 陈福栋, 黄清雨, 康亮亮, 刘晓云, 王路, 袁广才. 微腔效应对顶发射串联蓝光有机电致发光器件性能的影响. 物理学报, 2020, 69(9): 096104. doi: 10.7498/aps.69.20191576
    [3] 管胜婕, 周林箭, 沈成梅, 张勇. 蓝色荧光有机发光二极管中的激子-电荷相互作用. 物理学报, 2020, 69(16): 167101. doi: 10.7498/aps.69.20191930
    [4] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [5] 张雅男, 王俊锋. 利用发光层梯度掺杂改善顶发射白光有机发光二极管光谱的稳定性. 物理学报, 2015, 64(9): 097801. doi: 10.7498/aps.64.097801
    [6] 刘浩杰, 蓝天, 倪国强. 室内可见光通信发光二极管阵列发射性能的研究. 物理学报, 2014, 63(23): 238503. doi: 10.7498/aps.63.238503
    [7] 刘佰全, 兰林锋, 邹建华, 彭俊彪. 具有新型双空穴注入层的有机发光二极管. 物理学报, 2013, 62(8): 087302. doi: 10.7498/aps.62.087302
    [8] 焦威, 雷衍连, 张巧明, 刘亚莉, 陈林, 游胤涛, 熊祖洪. 有机发光二极管的光致磁电导效应. 物理学报, 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [9] 钱可元, 马骏, 付伟, 罗毅. 基于Mie散射理论的白光发光二极管荧光粉散射特性研究. 物理学报, 2012, 61(20): 204201. doi: 10.7498/aps.61.204201
    [10] 王宁, 朱永, 韦玮, 陈建君, 李平, 文玉梅. 基于纳米孔阵列增透膜的光伏器件特性分析及实验研究. 物理学报, 2012, 61(3): 038801. doi: 10.7498/aps.61.038801
    [11] 李慧盈, 段羽. 基于相变原理模拟红色顶发射有机电致发光器件的出光性能. 物理学报, 2011, 60(6): 067307. doi: 10.7498/aps.60.067307
    [12] 刘荣, 张勇, 雷衍连, 陈平, 张巧明, 熊祖洪. LiF插层对有机发光二极管磁场效应的调控. 物理学报, 2010, 59(6): 4283-4289. doi: 10.7498/aps.59.4283
    [13] 张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪. 基于Alq3的有机发光二极管的磁电导效应. 物理学报, 2010, 59(8): 5817-5822. doi: 10.7498/aps.59.5817
    [14] 邹建华, 兰林锋, 徐瑞霞, 杨伟, 彭俊彪. 有机薄膜晶体管驱动聚合物发光二极管研究. 物理学报, 2010, 59(2): 1275-1281. doi: 10.7498/aps.59.1275
    [15] 李春, 彭俊彪, 曾文进. 新型TPBI/Ag阴极结构的红色有机发光二极管. 物理学报, 2009, 58(3): 1992-1996. doi: 10.7498/aps.58.1992
    [16] 尚淑珍, 邵建达, 范正修. 低损耗193 nm增透膜. 物理学报, 2008, 57(3): 1946-1950. doi: 10.7498/aps.57.1946
    [17] 王 军, 魏孝强, 饶海波, 成建波, 蒋亚东. 基于铱配合物材料的高效高稳定性有机发光二极管. 物理学报, 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
    [18] 曹 进, 蒋雪茵, 张志林. 微腔调色法实现有机发光器件三基色的研究. 物理学报, 2007, 56(6): 3493-3498. doi: 10.7498/aps.56.3493
    [19] 曹 进, 刘 向, 张晓波, 委福祥, 朱文清, 蒋雪茵, 张志林, 许少鸿. 微腔结构顶发射有机发光器件. 物理学报, 2007, 56(2): 1088-1092. doi: 10.7498/aps.56.1088
    [20] 许雪梅, 彭景翠, 李宏建, 瞿述, 赵楚军, 罗小华. 有机层界面对双层有机发光二极管复合效率的影响. 物理学报, 2004, 53(1): 286-290. doi: 10.7498/aps.53.286
计量
  • 文章访问数:  6835
  • PDF下载量:  1053
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-23
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

/

返回文章
返回