搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金纳米结构表面二次电子发射特性

王丹 贺永宁 叶鸣 崔万照

引用本文:
Citation:

金纳米结构表面二次电子发射特性

王丹, 贺永宁, 叶鸣, 崔万照

Secondary electron emission characteristics of gold nanostructures

Wang Dan, He Yong-Ning, Ye Ming, Cui Wan-Zhao
PDF
导出引用
  • 使用低气压蒸发工艺制备了金纳米结构,研究了金纳米结构的二次电子发射特性及其对表面形貌的依赖规律,表征了金纳米结构表面出射二次电子能量分布.实验结果表明:蒸发气压升高时,金纳米结构孔隙率增大,表面电子出射产额降低;能量分布表明金纳米结构仅对低能真二次电子有明显抑制作用,对背散射电子的作用效果则依赖于表面形貌.使用由半球和沟槽构成的复合结构,并结合二次电子发射唯象概率模型,对金纳米结构进行模型等效及电子发射特性仿真,模拟结果表明:纳米结构中的半球状纳米颗粒对两种电子产额均有增强作用;沟槽对真二次电子产额有强抑制作用,而对背散射电子产额仅有微弱抑制作用.本工作深入研究了金纳米结构表面电子发射机理,对于开发空间微波系统中纳米级低电子产额表面有重要参考价值.
    Secondary electron emission (SEE), which is a frequent phenomenon in space high power microwave systems, is one of the basic inducement of multipactor in space microwave components. It is already verified that lowering SEE is an effective method to mitigate the undesirable effect. Metal black nanostructures have ever been reported to suppress SEE remarkably, however, the SEE characteristics of the gold nanostructures are rarely investigated. In this work, we use the thermal evaporation to fabricate the gold nanostructures under various evaporation gas pressures, and further analyze their SEE characteristics as well as energy distribution information. Experimental results reveal that the evaporation gas pressure determines the morphology of gold nanostructure, and the morphology dominates the SEE level of the gold nanostructure. To be specific, as the evaporation gas pressure rises, the porosity of the nanostructure increases and the SEE yield decreases. The energy distribution information indicates that the gold nanostructure just suppresses the true secondary electrons (TSEs) effectively. However, the effect of the nanostructure on the back scattered electrons (BSEs) is heavily dependent on the surface morphology. Specifically, the nanostructure fabricated at 70 Pa suppresses the BSEs weakly while the nanostructures fabricated at 40-60 Pa enhance the BSEs to some degree. To theoretically explain the experimental phenomena, we establish an equivalent model, which is made up of the periodical combination of a hemisphere and a composite groove, to imitate the fabricated gold nanostructure and simulate its SEE characteristics based on the SEE phenomenological probability model. Simulation results indicate that the hemisphere induces more TSEs and BSEs while the composite groove suppresses them, besides, the groove suppresses the TSEs much more remarkably than the BSEs. The SEE level of the nanostructure model is determined by the weighted average effect of both the hemisphere and the groove. The simulations qualitatively explain the experimental phenomena. This work in depth reveals the SEE mechanism for the gold nanostructures, and is of considerable significance for developing the low SEE surface on a nanometer scale in a space high power microwave-system.
      通信作者: 贺永宁, yongning@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:U1537211,61501364)资助的课题.
      Corresponding author: He Yong-Ning, yongning@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1537211, 61501364).
    [1]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 3198

    [2]

    Semenov V E, Rasch J, Rakova E, Johansson J F 2014 IEEE Trans. Plasma Sci. 42 721

    [3]

    Wang D, He Y N, Li Y 2017 Chin. Space Sci. Technol. 37 1 (in Chinese)[王丹, 贺永宁, 李韵 2017 中国空间科学技术 37 1]

    [4]

    Vaughan J R M 1988 IEEE Trans. Electron Devices 35 1172

    [5]

    Hueso J, Vicente C, Gimeno B, Boria V E, Marini S, Taroncher M 2010 IEEE Trans. Electron Devices 57 3508

    [6]

    Nistor V, Gonzlez L A, Aguilera L, Montero I, Galn L, Wochner U, Raboso D 2014 Appl. Surf. Sci. 315 445

    [7]

    Yang J, Cui W Z, Li Y, Xie G B, Zhang N, Wang R, Hu T C, Zhang H T 2016 Appl. Surf. Sci. 382 88

    [8]

    Ruiz A, Romn E, Lozano P, Garca M, Galn L, Montero I, Raboso D 2007 Vacuum 81 1493

    [9]

    Luo J, Tian P, Pan C T, Roberson A W, Warner J H, Hill E W, Briggs G A D 2011 ACS Nano 5 1047

    [10]

    Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904

    [11]

    Ye M, He Y N, Hu S G, Yang J, Wang R, Hu T C, Peng W B, Cui W Z 2013 J. Appl. Phys. 114 104905

    [12]

    Ye M, He Y N, Wang R, Hu T C, Zhang N, Yang J, Cui W Z, Zhang Z B 2014 Acta Phys. Sin. 63 147901 (in Chinese)[叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵 2014 物理学报 63 147901]

    [13]

    Valizadeh R, Malyshev O B, Wang S H, Zolotovskaya S A, Gillespie W A, Abdolvand A 2014 Appl. Phys. Lett. 105 231605

    [14]

    Watts C, Gilmore M 2011 IEEE Trans. Plasma Sci. 39 836

    [15]

    Bruining H 1954 Physics and Applications of Secondary Electron Emission (London:Pergamon Press) p142

    [16]

    Thomas S, Pattinson E B 1970 J. Phys. D 3 1469

    [17]

    He Y N, Peng W B, Cui W Z, Ye M, Zhao X L, Wang D, Hu T C, Wang R, Li Y 2016 AIP Adv. 6 025122

    [18]

    Wang D, He Y N, Ye M, Peng W B, Cui W Z 2017 J. Appl. Phys. 122 153302

    [19]

    Ye M, Wang D, Li Y, He Y N, Cui W Z, Daneshmand M 2017 J. Appl. Phys. 121 074902

    [20]

    Cui W Z, Yang J, Zhang N 2013 Space Electron Technol 10 75 (in Chinese)[崔万照, 杨晶, 张娜 2013 空间电子技术 10 75]

    [21]

    Zhang N, Cao M, Cui W Z, Zhang H B 2014 Chinese J. Vac. Sci. Technol. 34 554 (in Chinese)[张娜, 曹猛, 崔万照, 张海波 2014 真空科学与技术学报 34 554]

    [22]

    Seiler H 1983 J. Appl. Phys. 54 R1

    [23]

    Lara J D, Prez F, Alfonseca M, Galn L, Montero I, Romn E, Raboso D, Baquero G 2006 IEEE Trans. Plasma Sci. 34 476

  • [1]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 3198

    [2]

    Semenov V E, Rasch J, Rakova E, Johansson J F 2014 IEEE Trans. Plasma Sci. 42 721

    [3]

    Wang D, He Y N, Li Y 2017 Chin. Space Sci. Technol. 37 1 (in Chinese)[王丹, 贺永宁, 李韵 2017 中国空间科学技术 37 1]

    [4]

    Vaughan J R M 1988 IEEE Trans. Electron Devices 35 1172

    [5]

    Hueso J, Vicente C, Gimeno B, Boria V E, Marini S, Taroncher M 2010 IEEE Trans. Electron Devices 57 3508

    [6]

    Nistor V, Gonzlez L A, Aguilera L, Montero I, Galn L, Wochner U, Raboso D 2014 Appl. Surf. Sci. 315 445

    [7]

    Yang J, Cui W Z, Li Y, Xie G B, Zhang N, Wang R, Hu T C, Zhang H T 2016 Appl. Surf. Sci. 382 88

    [8]

    Ruiz A, Romn E, Lozano P, Garca M, Galn L, Montero I, Raboso D 2007 Vacuum 81 1493

    [9]

    Luo J, Tian P, Pan C T, Roberson A W, Warner J H, Hill E W, Briggs G A D 2011 ACS Nano 5 1047

    [10]

    Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904

    [11]

    Ye M, He Y N, Hu S G, Yang J, Wang R, Hu T C, Peng W B, Cui W Z 2013 J. Appl. Phys. 114 104905

    [12]

    Ye M, He Y N, Wang R, Hu T C, Zhang N, Yang J, Cui W Z, Zhang Z B 2014 Acta Phys. Sin. 63 147901 (in Chinese)[叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵 2014 物理学报 63 147901]

    [13]

    Valizadeh R, Malyshev O B, Wang S H, Zolotovskaya S A, Gillespie W A, Abdolvand A 2014 Appl. Phys. Lett. 105 231605

    [14]

    Watts C, Gilmore M 2011 IEEE Trans. Plasma Sci. 39 836

    [15]

    Bruining H 1954 Physics and Applications of Secondary Electron Emission (London:Pergamon Press) p142

    [16]

    Thomas S, Pattinson E B 1970 J. Phys. D 3 1469

    [17]

    He Y N, Peng W B, Cui W Z, Ye M, Zhao X L, Wang D, Hu T C, Wang R, Li Y 2016 AIP Adv. 6 025122

    [18]

    Wang D, He Y N, Ye M, Peng W B, Cui W Z 2017 J. Appl. Phys. 122 153302

    [19]

    Ye M, Wang D, Li Y, He Y N, Cui W Z, Daneshmand M 2017 J. Appl. Phys. 121 074902

    [20]

    Cui W Z, Yang J, Zhang N 2013 Space Electron Technol 10 75 (in Chinese)[崔万照, 杨晶, 张娜 2013 空间电子技术 10 75]

    [21]

    Zhang N, Cao M, Cui W Z, Zhang H B 2014 Chinese J. Vac. Sci. Technol. 34 554 (in Chinese)[张娜, 曹猛, 崔万照, 张海波 2014 真空科学与技术学报 34 554]

    [22]

    Seiler H 1983 J. Appl. Phys. 54 R1

    [23]

    Lara J D, Prez F, Alfonseca M, Galn L, Montero I, Romn E, Raboso D, Baquero G 2006 IEEE Trans. Plasma Sci. 34 476

  • [1] 霍龙桦, 谢国锋. 表面低配位原子对声子的散射机制. 物理学报, 2019, 68(8): 086501. doi: 10.7498/aps.68.20190194
    [2] 林南省, 韩禄雪, 江淼, 李英骏. 复合场下优化产生粒子对能量分布宽度的特性研究. 物理学报, 2018, 67(13): 133401. doi: 10.7498/aps.67.20172656
    [3] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [4] 陈修国, 袁奎, 杜卫超, 陈军, 江浩, 张传维, 刘世元. 基于Mueller矩阵成像椭偏仪的纳米结构几何参数大面积测量. 物理学报, 2016, 65(7): 070703. doi: 10.7498/aps.65.070703
    [5] 华钰超, 曹炳阳. 多约束纳米结构的声子热导率模型研究. 物理学报, 2015, 64(14): 146501. doi: 10.7498/aps.64.146501
    [6] 王秋萍, 冯玉军, 徐卓, 成鹏飞, 凤飞龙. 铌镁酸铅-钛酸铅铁电阴极电子发射特性. 物理学报, 2015, 64(24): 247701. doi: 10.7498/aps.64.247701
    [7] 高翔, 陈晓波, 黎军, 李家明. 价键优选法及其在纳米结构预测与物性研究中的应用. 物理学报, 2013, 62(9): 093601. doi: 10.7498/aps.62.093601
    [8] 虞洋, 赵永涛, 王瑜玉, 王兴, 程锐, 周贤明, 李永峰, 刘世东, 雷瑜, 孙渊博, 曾利霞. 近玻尔速度Ne2+离子穿过碳膜引起的电子发射. 物理学报, 2013, 62(15): 157901. doi: 10.7498/aps.62.157901
    [9] 韩玉岩, 曹亮, 徐法强, 陈铁锌, 郑志远, 万力, 刘凌云. 苝四甲酸二酐有机单晶纳米结构的制备及形成机理的研究. 物理学报, 2012, 61(7): 078103. doi: 10.7498/aps.61.078103
    [10] 张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林. Sb2Te3 纳米结构的制备与表征. 物理学报, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [11] 陈安民, 高勋, 姜远飞, 丁大军, 刘航, 金明星. 数值模拟飞秒激光加热金属的热电子发射. 物理学报, 2010, 59(10): 7198-7202. doi: 10.7498/aps.59.7198
    [12] 王建国, 徐忠锋, 赵永涛, 王瑜玉, 李德慧, 赵迪, 肖国青. 反冲原子对低速离子轰击Si表面时电子发射产额的影响. 物理学报, 2010, 59(11): 7803-7807. doi: 10.7498/aps.59.7803
    [13] 武祥, 蔡伟, 曲凤玉. ZnO一维纳米结构的形貌调控与亲疏水性研究. 物理学报, 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
    [14] 张琳丽, 徐卓, 冯玉军, 盛兆玄. 负脉冲激励下PLZST电子发射特征及发射机理研究. 物理学报, 2009, 58(6): 4249-4253. doi: 10.7498/aps.58.4249
    [15] 程笃庆, 关庆丰, 朱健, 邱东华, 程秀围, 王雪涛. 强流脉冲电子束诱发纯镍表层纳米结构的形成机制. 物理学报, 2009, 58(10): 7300-7306. doi: 10.7498/aps.58.7300
    [16] 李爱华, 张凯旺, 孟利军, 李 俊, 刘文亮, 钟建新. 基于graphene条带的硅纳米结构. 物理学报, 2008, 57(7): 4356-4363. doi: 10.7498/aps.57.4356
    [17] 盛兆玄, 冯玉军, 黄 璇, 徐 卓, 孙新利. 反铁电陶瓷的强电子发射特性研究. 物理学报, 2008, 57(7): 4590-4595. doi: 10.7498/aps.57.4590
    [18] 杨红官, 施毅, 闾锦, 濮林, 张荣, 郑有. 锗/硅异质纳米结构中空穴存储特性研究. 物理学报, 2004, 53(4): 1211-1216. doi: 10.7498/aps.53.1211
    [19] 卢励吾, 张砚华, 徐遵图, 徐仲英, 王占国, J.Wang, WeikunGe. 快速热处理对应变InGaAs/GaAs单量子阱激光二极管电子发射和DX中心的影响. 物理学报, 2002, 51(2): 367-371. doi: 10.7498/aps.51.367
    [20] 谭震宇, 夏曰源. 低能束作用下衬底上超薄膜背散射电子发射. 物理学报, 2002, 51(7): 1506-1511. doi: 10.7498/aps.51.1506
计量
  • 文章访问数:  3727
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-11
  • 修回日期:  2018-02-02
  • 刊出日期:  2019-04-20

金纳米结构表面二次电子发射特性

  • 1. 西安交通大学微电子学院, 西安 710049;
  • 2. 中国空间技术研究院西安分院, 空间微波技术国防科技重点实验室, 西安 710100
  • 通信作者: 贺永宁, yongning@mail.xjtu.edu.cn
    基金项目: 国家自然科学基金(批准号:U1537211,61501364)资助的课题.

摘要: 使用低气压蒸发工艺制备了金纳米结构,研究了金纳米结构的二次电子发射特性及其对表面形貌的依赖规律,表征了金纳米结构表面出射二次电子能量分布.实验结果表明:蒸发气压升高时,金纳米结构孔隙率增大,表面电子出射产额降低;能量分布表明金纳米结构仅对低能真二次电子有明显抑制作用,对背散射电子的作用效果则依赖于表面形貌.使用由半球和沟槽构成的复合结构,并结合二次电子发射唯象概率模型,对金纳米结构进行模型等效及电子发射特性仿真,模拟结果表明:纳米结构中的半球状纳米颗粒对两种电子产额均有增强作用;沟槽对真二次电子产额有强抑制作用,而对背散射电子产额仅有微弱抑制作用.本工作深入研究了金纳米结构表面电子发射机理,对于开发空间微波系统中纳米级低电子产额表面有重要参考价值.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回