搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合场下优化产生粒子对能量分布宽度的特性研究

林南省 韩禄雪 江淼 李英骏

引用本文:
Citation:

复合场下优化产生粒子对能量分布宽度的特性研究

林南省, 韩禄雪, 江淼, 李英骏

Dependence of peak width of energy distribution on profile of combined field

Lin Nan-Sheng, Han Lu-Xue, Jiang Miao, Li Ying-Jun
PDF
导出引用
  • 采用计算量子场论的方法,对振荡场加稳恒场的组合外场下真空中正反粒子对的产生特性进行了研究.通过一系列的对比得到当振荡场的宽度减小时,一方面可增加正反粒子对的产生量,另一方面也可减小正反粒子对的能量分布宽度从而得到能量单一性更好的粒子对.同时,通过分析产生量、能量分布宽度与振荡场宽度的关系可得出,仅在一定范围内减小振荡场的宽度可使能量分布更加集中,则能量分布宽度趋于某个极限值.因此,要得到产生量多且能量分布集中的正反粒子对应选择合适的参数,这可为今后的实验设计提供数据参考.
    In this paper, we use the quantum field theory to solve the generation process of particle-anti-particle pairs (PAPs), and study the generation characteristics of PAPs by changing the profile of the field combining an oscillating field and a static electric field. We find a way to increase the generation of PAPs and change the energy distribution. As the field strength of the oscillating field increases, the quantity of particle pairs generated increases. Increasing the field strength of a static electric field yields higher energy pairs of particles. If the frequency of the oscillating field becomes higher, the peak of the energy distribution shifts to higher energy but the width of the peak remains unchanged. The reduction of the field width of the oscillating field increases the generated quantity of PAPs on the one hand, and reduces the peak width of the energy distribution on the other hand. Therefore, we can obtain a narrower range of the energy distribution and more PAPs at less energy cost. Meanwhile, the relationship among the generation yield, the width of energy distribution and the width of the oscillation field is obtained. The width of the oscillating field only significantly narrows the peak width of the energy distribution in a range and reaches a limit after that. This provides useful details for future experiments, and suggests an appropriate width of the oscillating field to produce enough quantity of PAPs with concentrated energy distribution. According to previous studies, varying field width will inevitably lead to the change in the intensity of the electric field. It will be shown that the concentrating of the energy distribution is induced by narrowing the oscillating field instead of increasing the electric field intensity. Therefore, more concentrated PAPs will be obtained and their mutual annihilation will lead to the generation of -ray, which can be used as a -ray in experiments that follow. We suggest reducing the width of the oscillating field to improve the energy concentration of both particles and anti-particles while their quantities are still large enough.
      通信作者: 李英骏, lyj@aphy.iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11605286,11405266,11374360)和国家重点基础研究发展计划(批准号:2013CBA01504)资助的课题.
      Corresponding author: Li Ying-Jun, lyj@aphy.iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11605286, 11405266, 11374360) and the National Basic Research Program of China (Grant No. 2013CBA01504).
    [1]

    Schwinger J 1951 Phys. Rev. 82 664

    [2]

    Chao C Y 1930 Phys. Rev. 36 1519

    [3]

    Cowan T, Backe H, Bethge K, Bokemeyer H, Folger H, Greenberg J S, Sakaguchi K, Schwalm D, Schweppe J, Stiebing K E, Vincent P 1986 Phys. Rev. Lett. 56 444

    [4]

    Ahmad I, Austin S M, Back B B, Betts R R, Calaprice F P, Chan K C, Chishti A, Conner C, Dunford R W, Fox J D, Freedman S J, Freer M, Gazes S B, Hallin A L, Happ T, Henderson D, Kaloskamis N I, Kashy E, Kutschera W, Last J, Lister C J, Liu M, Maier M R, Mercer D J, Mikolas D, Perera P A A, Rhein M D, Roa D E, Schiffer J P, Trainor T A, Wilt P, Winfield J S, Wolanski M R, Wolfs F L H, Wuosmaa A H, Xu G, Young A, Yurkon J E (A P E X Collaboration) 1997 Phys. Rev. Lett. 78 618

    [5]

    Burke D L, Field R C, Horton-Smith G, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W, Bula C, McDonald K T, Prebys E J, Bamber C, Boege S J, Koffas T, Kotseroglou T, Melissinos A C, Meyerhofer D D, Reis D A, Ragg W 1997 Phys. Rev. Lett. 79 1626

    [6]

    Tajima T, Mourou G 2002 Phys. Rev. Spec. Top. 5 031301

    [7]

    Hubbell J H 2006 Radiat. Phys. Chem. 75 614

    [8]

    Dong S S, Chen M, Su Q, Grobe R 2017 Phys. Rev. A 96 032120

    [9]

    Schtzhold R, Gies H, Dunne G 2008 Phys. Rev. Lett. 101 130404

    [10]

    Su Q, Grobe R 2008 Laser Phys. 17 92

    [11]

    Muller B, Greiner W, Rafelski J 1985 Quantum Electrodynamics of Strong Fields (Berlin: Springer) p26

    [12]

    Shen H, Bandrauk A D 1994 J. Phys. A 27 7147

    [13]

    Braun J W, Su Q, Grobe R 1999 Phys. Rev. A 59 604

    [14]

    Mocken G R, Keitel C H 2008 Comput. Phys. Commun. 178 868

    [15]

    Ruf M, Bauke H, Keitel C H 2009 J. Comput. Phys. 228 9092

    [16]

    Cheng T, Su Q, Grobe R 2010 Contemp. Phys. 51 315

    [17]

    Holstein B R 1998 Am. J. Phys. 66 507

    [18]

    Sauter F 1931 Z. Phys. 69 742

    [19]

    Hansen A, Ravndal F 1981 Phys. Scr. 23 1036

    [20]

    Holstein B R 1999 Am. J. Phys. 67 499

    [21]

    Cheng T, Su Q, Grobe R 2010 Contemp. Phys. 51 315

    [22]

    Krekora P, Su Q, Grobe R 2004 Phys. Rev. Lett. 93 043004

    [23]

    Newton T D, Wigner E P 1949 Rev. Mod. Phys. 21 400

    [24]

    Jiang M, Su W, L Z Q, Lu X, Li Y J, Grobe R, Su Q 2012 Phys. Rev. A 85 033408

    [25]

    Jiang M, L Q Z, Sheng Z M, Grobe R, Su Q 2013 Phys. Rev. A 87 042503

  • [1]

    Schwinger J 1951 Phys. Rev. 82 664

    [2]

    Chao C Y 1930 Phys. Rev. 36 1519

    [3]

    Cowan T, Backe H, Bethge K, Bokemeyer H, Folger H, Greenberg J S, Sakaguchi K, Schwalm D, Schweppe J, Stiebing K E, Vincent P 1986 Phys. Rev. Lett. 56 444

    [4]

    Ahmad I, Austin S M, Back B B, Betts R R, Calaprice F P, Chan K C, Chishti A, Conner C, Dunford R W, Fox J D, Freedman S J, Freer M, Gazes S B, Hallin A L, Happ T, Henderson D, Kaloskamis N I, Kashy E, Kutschera W, Last J, Lister C J, Liu M, Maier M R, Mercer D J, Mikolas D, Perera P A A, Rhein M D, Roa D E, Schiffer J P, Trainor T A, Wilt P, Winfield J S, Wolanski M R, Wolfs F L H, Wuosmaa A H, Xu G, Young A, Yurkon J E (A P E X Collaboration) 1997 Phys. Rev. Lett. 78 618

    [5]

    Burke D L, Field R C, Horton-Smith G, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W, Bula C, McDonald K T, Prebys E J, Bamber C, Boege S J, Koffas T, Kotseroglou T, Melissinos A C, Meyerhofer D D, Reis D A, Ragg W 1997 Phys. Rev. Lett. 79 1626

    [6]

    Tajima T, Mourou G 2002 Phys. Rev. Spec. Top. 5 031301

    [7]

    Hubbell J H 2006 Radiat. Phys. Chem. 75 614

    [8]

    Dong S S, Chen M, Su Q, Grobe R 2017 Phys. Rev. A 96 032120

    [9]

    Schtzhold R, Gies H, Dunne G 2008 Phys. Rev. Lett. 101 130404

    [10]

    Su Q, Grobe R 2008 Laser Phys. 17 92

    [11]

    Muller B, Greiner W, Rafelski J 1985 Quantum Electrodynamics of Strong Fields (Berlin: Springer) p26

    [12]

    Shen H, Bandrauk A D 1994 J. Phys. A 27 7147

    [13]

    Braun J W, Su Q, Grobe R 1999 Phys. Rev. A 59 604

    [14]

    Mocken G R, Keitel C H 2008 Comput. Phys. Commun. 178 868

    [15]

    Ruf M, Bauke H, Keitel C H 2009 J. Comput. Phys. 228 9092

    [16]

    Cheng T, Su Q, Grobe R 2010 Contemp. Phys. 51 315

    [17]

    Holstein B R 1998 Am. J. Phys. 66 507

    [18]

    Sauter F 1931 Z. Phys. 69 742

    [19]

    Hansen A, Ravndal F 1981 Phys. Scr. 23 1036

    [20]

    Holstein B R 1999 Am. J. Phys. 67 499

    [21]

    Cheng T, Su Q, Grobe R 2010 Contemp. Phys. 51 315

    [22]

    Krekora P, Su Q, Grobe R 2004 Phys. Rev. Lett. 93 043004

    [23]

    Newton T D, Wigner E P 1949 Rev. Mod. Phys. 21 400

    [24]

    Jiang M, Su W, L Z Q, Lu X, Li Y J, Grobe R, Su Q 2012 Phys. Rev. A 85 033408

    [25]

    Jiang M, L Q Z, Sheng Z M, Grobe R, Su Q 2013 Phys. Rev. A 87 042503

  • [1] 郭富城, 李翠, 厉彦忠. 定向红外光空间分布误差对冷冻靶温度场的影响分析. 物理学报, 2022, 71(11): 110702. doi: 10.7498/aps.71.20212351
    [2] 石泰峡, 董丽娟, 陈永强, 刘艳红, 刘丽想, 石云龙. 人工磁导体对无线能量传输空间场的调控. 物理学报, 2019, 68(21): 214203. doi: 10.7498/aps.68.20190862
    [3] 王丹, 贺永宁, 叶鸣, 崔万照. 金纳米结构表面二次电子发射特性. 物理学报, 2018, 67(8): 087902. doi: 10.7498/aps.67.20180079
    [4] 谭毅, 李新阳. 光束相干合成中填充因子对远场光强分布的影响. 物理学报, 2014, 63(9): 094202. doi: 10.7498/aps.63.094202
    [5] 李树, 邓力, 田东风, 李刚. 基于能量密度分布的辐射源粒子空间抽样方法研究. 物理学报, 2014, 63(23): 239501. doi: 10.7498/aps.63.239501
    [6] 章春来, 刘春明, 向霞, 王治国, 李莉, 袁晓东, 贺少勃, 祖小涛. 形状与位置对断点划痕场分布的影响研究. 物理学报, 2012, 61(16): 164207. doi: 10.7498/aps.61.164207
    [7] 牛军, 张益军, 常本康, 熊雅娟. GaAs光电阴极激活后的表面势垒评估研究. 物理学报, 2011, 60(4): 044210. doi: 10.7498/aps.60.044210
    [8] 洪伟毅, 杨振宇, 兰鹏飞, 张庆斌, 李钱光, 陆培祥. 非平行偏振双色场驱动产生脉宽稳定的单个宽谱阿秒脉冲. 物理学报, 2009, 58(7): 4914-4919. doi: 10.7498/aps.58.4914
    [9] 邹秀, 邹滨雁, 刘惠平. 外加磁场对碰撞射频鞘层离子能量分布的影响. 物理学报, 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [10] 张娜珍, 仓怀文, 王卫国, 苗书一, 金峰, 吴庆浩, 花磊, 李海洋. 乙醚团簇在纳秒激光场中的多价电离及其电子能量分布的研究. 物理学报, 2009, 58(7): 4556-4562. doi: 10.7498/aps.58.4556
    [11] 王 薇, 张 杰, 赵 刚. 普朗克谱分布的辐射场对束缚电子布居的影响. 物理学报, 2008, 57(3): 1759-1764. doi: 10.7498/aps.57.1759
    [12] 王 颖, 刘 旭, 章岳光, 顾培夫, 厉以宇, 李明宇. 激光入射角度对薄膜热场分布影响的数值分析. 物理学报, 2007, 56(4): 2382-2387. doi: 10.7498/aps.56.2382
    [13] 邹其徽, 吕百达. 等束宽超短脉冲光束的远场特性. 物理学报, 2005, 54(12): 5642-5647. doi: 10.7498/aps.54.5642
    [14] 齐红基, 易 葵, 贺洪波, 邵建达. 溅射粒子能量对金属Mo薄膜表面特性的影响. 物理学报, 2004, 53(12): 4398-4404. doi: 10.7498/aps.53.4398
    [15] 王骐, 陈建新, 夏元钦, 陈德应. 基于OFI椭圆偏振光场等离子体中电离电子能量分布的研究. 物理学报, 2002, 51(5): 1035-1039. doi: 10.7498/aps.51.1035
    [16] 陈敏, 魏合林, 刘祖黎, 姚凯伦. 沉积粒子能量对薄膜早期生长过程的影响. 物理学报, 2001, 50(12): 2446-2451. doi: 10.7498/aps.50.2446
    [17] 刘洪祥, 魏合林, 刘祖黎, 刘艳红, 王均震. 磁镜场对射频等离子体中离子能量分布的影响. 物理学报, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
    [18] 陈如鸿, 马本堃. 键电导宽分布的等级网络. 物理学报, 1996, 45(7): 1197-1204. doi: 10.7498/aps.45.1197
    [19] 刘佑昌. 双星系统的能量及其分布. 物理学报, 1979, 28(2): 152-159. doi: 10.7498/aps.28.152
    [20] 吴全德. 光电子的初能量分布与角度分布. 物理学报, 1958, 14(2): 139-152. doi: 10.7498/aps.14.139
计量
  • 文章访问数:  5620
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-14
  • 修回日期:  2018-04-19
  • 刊出日期:  2018-07-05

/

返回文章
返回