搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

定向红外光空间分布误差对冷冻靶温度场的影响分析

郭富城 李翠 厉彦忠

引用本文:
Citation:

定向红外光空间分布误差对冷冻靶温度场的影响分析

郭富城, 李翠, 厉彦忠

Analysis of influence of spatial distribution error of directional infrared light on temperature field of cryogenic targets

Guo Fu-Cheng, Li Cui, Li Yan-Zhong
PDF
HTML
导出引用
  • 在惯性约束核聚变中, 决定点火成功与否的关键因素在于靶丸内燃料冰层的均匀性, 而影响靶丸内燃料冰层均匀性的主要因素为靶丸温度场均匀性. 为了提升靶丸温度场均匀性, 采用定向红外辅助均化装置实现对靶丸表面温度场的局部调控. 在定向红外装置的运行过程中, 红外光空间分布误差会影响到靶丸温度场的调控效果. 建立了定向红外光线追踪与温度场计算耦合的数值模型, 并与实验进行对照分析, 确定了数值模型良好的计算精度. 采用三维的冷冻靶物理模型, 研究了不同形式的定向红外光空间分布误差对靶丸温度场的影响规律. 结果表明: 光轴偏心对靶丸温度场均匀性的影响最为剧烈, 光带间距变化的影响次之, 光带宽度的变化对靶丸温度场均匀性的影响最小. 在实验中应当尽可能避免南北两侧光带光轴的偏心, 从而保证靶丸表面温度均匀性, 进而可以保证靶丸内燃料冰层的均匀性.
    For an inertial-confinement-fusion cryogenic target, the fusion ice layer inside the capsule should have a uniformity more than 99% and an inner surface roughness less than 1 μm (root mean square) to avoid Rayleigh-Taylor instabilities. And this highly smooth ice layer required for ignition is generated in the presence of volumetric heat and affected by the thermal environment around the capsule. For the D2 fuel targets, the uniformity of the fusion ice layer inside the capsule is consistent with the uniformity of the surface temperature around the capsule, and the latter can be controlled by directional infrared illumination. A major challenge of directional infrared illumination is the precision of directional infrared spatial distribution. In this paper, a numerical model coupling the directional infrared tracking and temperature field calculation is proposed and validated by experimental results. A three-dimensional physical model of the cryogenic target is used to study the influences of different forms of directional infrared spatial distribution errors on the temperature uniformity of the capsule. The results show that the eccentricity of IR band axis has the worst effect on the temperature uniformity of the capsule, followed by the distance between both IR bands, and the width of the IR band has the least effect on the temperature uniformity of the capsule. Therefore, the eccentricity of IR band axis should be avoided in experiment to ensure the uniformity of the temperature of the capsule, further ensuring the uniformity of the fuel ice layer inside the capsule.
      通信作者: 李翠, xjtucli@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52176021)资助的课题
      Corresponding author: Li Cui, xjtucli@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52176021).
    [1]

    张歆, 章晓中, 谭新玉, 于奕, 万蔡华 2012 物理学报 61 147303Google Scholar

    Zhang X, Zhang X Z, Tan X Y, Yu Y, Wan C H 2012 Acta Phys. Sin. 61 147303Google Scholar

    [2]

    杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 物理学报 64 038404Google Scholar

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar

    [3]

    Horvath A, Rachlew E 2016 Ambio 45 38Google Scholar

    [4]

    Chen W M, Kim H, Yamaguchi H 2014 Energy Policy 74 31Google Scholar

    [5]

    程云鹤, 董洪光, 耿纪超, 何继善 2021 中国工程科学 23 11Google Scholar

    Cheng Y H, Dong H G, Geng J C, He J S 2021 Strategic Study of CAE 23 11Google Scholar

    [6]

    Fang S D, Zhao C H, Ding Z H, Zhang S X, Liao R J 2021 Proc Chin Soc Elect Eng DOI:10.13334/j.0258-8013.pcsee.212121

    [7]

    张占文, 漆小波, 李波 2012 物理学报 61 145204Google Scholar

    Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204Google Scholar

    [8]

    黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟 2015 物理学报 64 215201Google Scholar

    Huang X, Peng S M, Zhou X S, Yu M M, Yin J, Wen C W 2015 Acta Phys. Sin. 64 215201Google Scholar

    [9]

    Nuckolls J, Wood L, Thiessen A 1972 Nature 239 139Google Scholar

    [10]

    Tang J, Xie Z Y, Du A, Ye J J, Zhang Z H, Shen J, Zhou B 2016 J. Fusion Energ. 35 357Google Scholar

    [11]

    Holmlid L 2014 J. Fusion Energ. 33 348Google Scholar

    [12]

    Lindl J D, Amendt P, Berger R L, Glendinning G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [13]

    Baclet P, Bachelet F, Choux A, Fleury E, Jeannot L, Laffite S, Martin M, Moll G, Pascal G, Reneaume B, Theobald M 2006 Fusion Sci, Technol. 49 565Google Scholar

    [14]

    王凯, 谢瑞, 林伟, 刘元琼, 黎军, 漆小波, 唐永建, 雷海乐 2013 强激光与粒子束 25 3230Google Scholar

    Wang K, Xie R, Lin W, Liu Y Q, Li J, Qi X B, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 3230Google Scholar

    [15]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak H L F, Kline J L, Le P S, Ma T, Macphee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [16]

    Moll G, Baclet P, Martin M 2006 Fusion Sci. Technal. 49 574Google Scholar

    [17]

    Moll G, Baclet P, Martin M 2007 Fusion Sci. Technal. 51 737Google Scholar

    [18]

    Betti R, Hurricane O A 2016 Nature Physics 12 435Google Scholar

    [19]

    Bittner D N, Collins G W, Sater J D 2003 Fusion Sci Technol 44 749Google Scholar

    [20]

    Moody J D, Kozioziemski B J, Mapoles E R 2008 J. Phys. :Conf. Ser. 112 032064Google Scholar

    [21]

    Kozioziemski B J, London R A, McEachern R L, Bittner D N 2017 Fusion Sci. Technal. 45 262Google Scholar

    [22]

    London R A, McEachern R L, Kozioziemski B J, Bittner D N 2017 Fusion Sci. Technal. 45 245Google Scholar

    [23]

    Cook R C, Anthamatten M, Letts S A 2004 Fusion Science and Technology 45 148Google Scholar

    [24]

    郭富城, 李翠, 厉彦忠 2021 物理学报 70 160703Google Scholar

    Guo F C, Li C, Li Y Z 2021 Acta Phys. Sin. 70 160703Google Scholar

    [25]

    Haan S W, Lindl D J, Callahan D A, Clark D S, Salmonson J D, Hammel B A, Atherton L J, Cook R C, Edwards M J, Glenzer S, Hamza A V 2011 Phys. Plasmas 18 051001Google Scholar

    [26]

    林博颖, 苏新明, 简亚彬 2018 航天器环境工程 35 5Google Scholar

    Lin B Y, Su X M, Jian Y B 2018 Spacecraft Environment Engineering 35 5Google Scholar

    [27]

    Li C, Chen P W, Zhao J 2018 Fusion Engineering & Design 127 23Google Scholar

  • 图 1  NIF Rev5 靶型结构尺寸 (a) NIF冷冻靶结构尺寸; (b) 靶丸结构尺寸

    Fig. 1.  Schematic of NIF Rev5 cryogenic target: (a) Structure of NIF cryogenic target; (b) structure of capsule.

    图 2  环形注入定向红外示意图

    Fig. 2.  Schematic of directional infrared.

    图 3  计算流程图

    Fig. 3.  Flow chart of calculation.

    图 4  真空红外笼加热实验装置示意图

    Fig. 4.  Sketch for an umbrella-shaped antenna and the IR heating surface.

    图 5  实验结果与模拟结果对照

    Fig. 5.  Comparison of experimental and simulated results.

    图 6  靶丸外表面温度云图

    Fig. 6.  The temperature contour of the capsule.

    图 7  不同光带功率密度q下靶丸表面温度云图 (a) q = 0 W·m–2; (b) q = 0.8 W·m–2; (c) q = 1.1 W·m–2; (d) q = 1.4 W·m–2

    Fig. 7.  The temperature contours of the capsule under different q: (a) q = 0 W·m–2; (b) q = 0.8 W·m–2; (c) q = 1.1 W·m–2; (d) q = 1.4 W·m–2.

    图 8  不同光带功率密度下靶丸表面温度特性

    Fig. 8.  The temperature characteristics of the capsule under a series of q.

    图 9  不同光带宽度下靶丸表面温度云图 (a) d = 0.20 mm; (b) d = 0.25 mm; (c) d = 0.30 mm; (d) d = 0.35 mm; (e) d = 0.40 mm

    Fig. 9.  The temperature contours of the capsule under different d: (a) d = 0.20 mm; (b) d = 0.25 mm; (c) d = 0.30 mm; (d) d = 0.35 mm; (e) d = 0.40 mm.

    图 10  不同光带宽度下靶丸表面温度特性变化曲线

    Fig. 10.  The temperature characteristics of the capsule under different d.

    图 11  光带间距变化示意图 (a)单侧光带偏移; (b)两侧光带偏移

    Fig. 11.  Schematic of the deviation of the IR bands: (a) Single-side IR band drifts; (b) both-sides IR bands drift.

    图 12  不同北侧光带偏移距离下的靶丸表面温度云图 (a) 0 mm; (b) 0.1 mm; (c) 0.2 mm; (d) 0.3 mm; (e) 0.4 mm; (f) 0.5 mm

    Fig. 12.  The temperature contours of the capsule at different offsets of the northern IR band: (a) 0 mm; (b) 0.1 mm; (c) 0.2 mm; (d) 0.3 mm; (e) 0.4 mm; (f) 0.5 mm.

    图 13  不同北侧光带偏移距离下的靶丸表面温度特性曲线

    Fig. 13.  The temperature characteristics of the capsule at different offsets of the northern IR band.

    图 14  不同光带间距下靶丸表面温度云图 (a) ΔH = 0; (b) ΔH = 0.2 mm; (c) ΔH = 0.4 mm; (d) ΔH = 0.6 mm; (e) ΔH = 0.8 mm; (f) ΔH = 1.0 mm

    Fig. 14.  The temperature contours of the capsule under different ΔH: (a) ΔH = 0; (b) ΔH = 0.2 mm; (c) ΔH = 0.4 mm; (d) ΔH = 0.6 mm; (e) ΔH = 0.8 mm; (f) ΔH = 1.0 mm.

    图 15  不同光带间距下靶丸表面温度特性变化曲线

    Fig. 15.  The temperature characteristics of the capsule under different ΔH.

    图 16  光轴偏移示意图 (a) 光轴同向偏移; (b) 光轴对向偏移

    Fig. 16.  Schematic of IR bands axes offset: (a) The axes of the IR bands shift in the same direction; (b) the axes of the IR bands shift in the opposite direction.

    图 17  不同南北两侧光轴同向偏移量下靶丸表面温度云图 (a) δ = 0; (b) δ = 0.05 mm; (c) δ = 0.10 mm; (d) δ = 0.15 mm; (e) δ = 0.20 mm; (f) δ = 0.25 mm; (g) δ = 0.25 mm 靶丸表面温度云图和柱腔赤道区域定向红外辐照热流云图

    Fig. 17.  The temperature contours of the capsule under different δ: (a) δ = 0; (b) δ = 0.05 mm; (c) δ = 0.10 mm; (d) δ = 0.15 mm; (e) δ = 0.20 mm; (f) δ = 0.25 mm; (g) δ = 0.25 mm, adding the radiation heat flux contour in the equatorial region of the hohlraum

    图 18  不同南北两侧光轴同向偏移量下靶丸表面温度特性变化曲线

    Fig. 18.  The temperature characteristics of the capsule under different δ.

    图 19  不同南北两侧光轴对向偏移量下靶丸表面温度云图 (a) δ = 0; (b) δ = 0.05 mm; (c) δ = 0.10 mm; (d) δ = 0.15 mm; (e) δ = 0.20 mm; (f) δ = 0.25 mm; (g) δ = 0.25 mm, 靶丸表面温度云图和柱腔赤道区域定向红外辐照热流云图

    Fig. 19.  The temperature contours of the capsule under different δ: (a) δ = 0; (b) δ = 0.05 mm; (c) δ = 0.10 mm; (d) δ = 0.15 mm; (e) δ = 0.20 mm; (f) δ = 0.25 mm; (g) δ = 0.25 mm, adding the radiation heat flux contour in the equatorial region of the hohlraum.

    图 20  不同南北两侧光轴对向偏移量下靶丸表面温度特性变化曲线

    Fig. 20.  The temperature characteristics of the capsule under different δ.

    图 21  不同定向红外空间分布误差形式对靶丸温度场均匀性的影响

    Fig. 21.  Influence of different forms of directional IR spatial distribution errors on the temperature uniformity of the capsule.

    表 1  不同材料在18 K环境下的物性参数

    Table 1.  Physical properties of different materials at 18 K.

    材料
    靶壳 He@1 kPa 气态D2 固态D2
    密度 ρ/(kg·m–3) 2710 19320 1100 0.3 0.025 260
    热容 cp/(J·kg–1·K–1) 8.37 14.66 57.49 5292.6 5193.7 5000
    导热系数 λ/(W·m–1·K–1) 27 1173.44 0.057 0.021 0.024 0.29
    动力黏度 μ/(10–6 kg·m–1·s–1) 1.31 3.42
    注: 本文不考虑气体对定向红外的影响, 因此氦气和氘气的吸收系数和散射系数均为0.
    下载: 导出CSV
  • [1]

    张歆, 章晓中, 谭新玉, 于奕, 万蔡华 2012 物理学报 61 147303Google Scholar

    Zhang X, Zhang X Z, Tan X Y, Yu Y, Wan C H 2012 Acta Phys. Sin. 61 147303Google Scholar

    [2]

    杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 物理学报 64 038404Google Scholar

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar

    [3]

    Horvath A, Rachlew E 2016 Ambio 45 38Google Scholar

    [4]

    Chen W M, Kim H, Yamaguchi H 2014 Energy Policy 74 31Google Scholar

    [5]

    程云鹤, 董洪光, 耿纪超, 何继善 2021 中国工程科学 23 11Google Scholar

    Cheng Y H, Dong H G, Geng J C, He J S 2021 Strategic Study of CAE 23 11Google Scholar

    [6]

    Fang S D, Zhao C H, Ding Z H, Zhang S X, Liao R J 2021 Proc Chin Soc Elect Eng DOI:10.13334/j.0258-8013.pcsee.212121

    [7]

    张占文, 漆小波, 李波 2012 物理学报 61 145204Google Scholar

    Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204Google Scholar

    [8]

    黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟 2015 物理学报 64 215201Google Scholar

    Huang X, Peng S M, Zhou X S, Yu M M, Yin J, Wen C W 2015 Acta Phys. Sin. 64 215201Google Scholar

    [9]

    Nuckolls J, Wood L, Thiessen A 1972 Nature 239 139Google Scholar

    [10]

    Tang J, Xie Z Y, Du A, Ye J J, Zhang Z H, Shen J, Zhou B 2016 J. Fusion Energ. 35 357Google Scholar

    [11]

    Holmlid L 2014 J. Fusion Energ. 33 348Google Scholar

    [12]

    Lindl J D, Amendt P, Berger R L, Glendinning G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [13]

    Baclet P, Bachelet F, Choux A, Fleury E, Jeannot L, Laffite S, Martin M, Moll G, Pascal G, Reneaume B, Theobald M 2006 Fusion Sci, Technol. 49 565Google Scholar

    [14]

    王凯, 谢瑞, 林伟, 刘元琼, 黎军, 漆小波, 唐永建, 雷海乐 2013 强激光与粒子束 25 3230Google Scholar

    Wang K, Xie R, Lin W, Liu Y Q, Li J, Qi X B, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 3230Google Scholar

    [15]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak H L F, Kline J L, Le P S, Ma T, Macphee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [16]

    Moll G, Baclet P, Martin M 2006 Fusion Sci. Technal. 49 574Google Scholar

    [17]

    Moll G, Baclet P, Martin M 2007 Fusion Sci. Technal. 51 737Google Scholar

    [18]

    Betti R, Hurricane O A 2016 Nature Physics 12 435Google Scholar

    [19]

    Bittner D N, Collins G W, Sater J D 2003 Fusion Sci Technol 44 749Google Scholar

    [20]

    Moody J D, Kozioziemski B J, Mapoles E R 2008 J. Phys. :Conf. Ser. 112 032064Google Scholar

    [21]

    Kozioziemski B J, London R A, McEachern R L, Bittner D N 2017 Fusion Sci. Technal. 45 262Google Scholar

    [22]

    London R A, McEachern R L, Kozioziemski B J, Bittner D N 2017 Fusion Sci. Technal. 45 245Google Scholar

    [23]

    Cook R C, Anthamatten M, Letts S A 2004 Fusion Science and Technology 45 148Google Scholar

    [24]

    郭富城, 李翠, 厉彦忠 2021 物理学报 70 160703Google Scholar

    Guo F C, Li C, Li Y Z 2021 Acta Phys. Sin. 70 160703Google Scholar

    [25]

    Haan S W, Lindl D J, Callahan D A, Clark D S, Salmonson J D, Hammel B A, Atherton L J, Cook R C, Edwards M J, Glenzer S, Hamza A V 2011 Phys. Plasmas 18 051001Google Scholar

    [26]

    林博颖, 苏新明, 简亚彬 2018 航天器环境工程 35 5Google Scholar

    Lin B Y, Su X M, Jian Y B 2018 Spacecraft Environment Engineering 35 5Google Scholar

    [27]

    Li C, Chen P W, Zhao J 2018 Fusion Engineering & Design 127 23Google Scholar

  • [1] 单翀, 孔令豹, 崔勇, 季来林, 赵晓晖, 李福建, 饶大幸, 赵元安, 隋展, 邵建达. 基于空间分辨法分析时间低相干光自聚焦效应. 物理学报, 2024, 73(9): 090601. doi: 10.7498/aps.73.20240138
    [2] 于家成, 仲佳勇, 安维明, 平永利. 短脉冲强激光驱动磁重联过程的靶后电势分布特征. 物理学报, 2021, 70(6): 065201. doi: 10.7498/aps.70.20201339
    [3] 邹雄, 漆小波, 张涛先, 高章帆, 黄卫星. 惯性约束聚变靶丸内杂质气体抽空流洗过程的数值模拟. 物理学报, 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [4] 郭富城, 李翠, 厉彦忠. 定向红外条件下光纤布置形式及光源参数对低温靶温度场的影响. 物理学报, 2021, 70(16): 160703. doi: 10.7498/aps.70.20210029
    [5] 刘婧, 张海波. 空间电子辐照聚合物的充电特性和微观机理. 物理学报, 2019, 68(5): 059401. doi: 10.7498/aps.68.20181925
    [6] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [7] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟. 物理学报, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [8] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比. 物理学报, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [9] 欧阳建明, 马燕云, 邵福球, 邹德滨, 刘建勋. 高空核爆炸X射线电离的时空分布数值模拟. 物理学报, 2012, 61(24): 242801. doi: 10.7498/aps.61.242801
    [10] 毕鹏, 雷海乐, 刘元琼, 黎军, 杨向东. 红外光诱导氘氘固体再分布的研究. 物理学报, 2012, 61(6): 062802. doi: 10.7498/aps.61.062802
    [11] 王晓方, 王晶宇. 菲涅耳波带板应用于聚变靶的高分辨X射线成像分析. 物理学报, 2011, 60(2): 025212. doi: 10.7498/aps.60.025212
    [12] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [13] 吕君, 赵正予, 张援农, 周晨. 非线性对大气介质中阵列聚焦声场分布影响的研究. 物理学报, 2010, 59(12): 8662-8668. doi: 10.7498/aps.59.8662
    [14] 花金荣, 祖小涛, 李莉, 向霞, 陈猛, 蒋晓东, 袁晓东, 郑万国. 熔石英亚表面三维Hertz锥形划痕附近光强分布的数值模拟. 物理学报, 2010, 59(4): 2519-2524. doi: 10.7498/aps.59.2519
    [15] 毕鹏, 刘元琼, 唐永建, 杨向东, 雷海乐. 液氢平面低温冷冻靶的红外吸收谱. 物理学报, 2010, 59(11): 7531-7534. doi: 10.7498/aps.59.7531
    [16] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [17] 钱仙妹, 朱文越, 饶瑞中. 非均匀湍流路径上光传播数值模拟的相位屏分布. 物理学报, 2009, 58(9): 6633-6639. doi: 10.7498/aps.58.6633
    [18] 王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志. Ti-45at.% Al合金定向凝固过程中显微组织演化的计算机模拟. 物理学报, 2008, 57(5): 3048-3058. doi: 10.7498/aps.57.3048
    [19] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [20] 丁伯江, 匡光力, 刘岳修, 沈慰慈, 俞家文, 石跃江. 低杂波电流驱动的数值模拟. 物理学报, 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
计量
  • 文章访问数:  3728
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 修回日期:  2022-02-27
  • 上网日期:  2022-03-04
  • 刊出日期:  2022-06-05

/

返回文章
返回