搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铷原子气体自旋噪声谱的测量与改进

尚雅轩 马健 史平 钱轩 李伟 姬扬

引用本文:
Citation:

铷原子气体自旋噪声谱的测量与改进

尚雅轩, 马健, 史平, 钱轩, 李伟, 姬扬

Measurement and improvement of rubidium spin noise spectroscopy

Shang Ya-Xuan, Ma Jian, Shi Ping, Qian Xuan, Li Wei, Ji Yang
PDF
导出引用
  • 利用自主设计并制作的基于现场可编程门阵列的实时傅里叶变换采集卡(FFTsDAC),采用线偏振光检测碱金属铷原子气样品中的自旋随机涨落(即自旋噪声谱).详细讨论了背景噪声以及自旋噪声随探测光光强的变化关系,证实了自旋噪声来自于系统中自旋的随机涨落.对比了两种FFTsDAC(8 bit采样的FFTsDAC1和12 bit采样的FFTsDAC2)的测量性能,分析了影响实验信噪比的因素.FFTsDAC2具有更高的测量效率和采样深度以及更长的单次采样时间,因而具有更高的信噪比和更好的频率分辨率,与数值模拟的结果一致.
    Spin noise spectroscopy (SNS) is a new kind of Faraday rotation technique, which does not need spin injection to generate polarized spin. This method uses a linearly polarized laser to detect the spontaneous spin fluctuation in a thermal equilibrium state. However, the signal of spontaneous spin fluctuation is so weak (~V) in the thermal equilibrium system that a big signal-noise ratio (SNR) is often demanded. Here, we report on the build-up and improvement of a spin noise spectrum measurement system. A home-made field-programmable gate array (FPGA) based data-acquisition card with real-time fast Fourier transform (DAC-FFT) is used to improve the SNR of the SNS measurement system. The reduction of intrinsic noise in the experimental system is discussed in detail. Both the dependence of background noise and the dependence of spin noise on the intensity of probe laser are analyzed. We find that the background noise is proportional to the intensity of the probe laser, while the spin noise signal shows square dependence on probe laser intensity. The spin noise indeed comes from the spontaneous spin fluctuation as experimentally confirmed via an acousto-optic modulator (AOM) inserted in the measurement system. The measurement performances of two FPGA based DAC-FFTs (the 8-bit FFTsDAC1 and the 12-bit FFTsDAC2, respectively) are compared. Several factors are found to affect the SNR of the system, including the measurement efficiency and the acquisition resolution. The FFTsDAC2 has longer single acquisition time and faster data transmission speed (with USB 3.0) than the FFTsDAC1, when the total measurement time is set to be the same, the effective measurement time realized in FFTsDAC2 is longer than in FFTsDAC1. With better measurement efficiency and sampling depth and longer single acquisition time, the FFTsDAC2 has a better SNR and finer frequency resolution with a much narrower full width at half maximum (FWHM) value. Moreover, the simulations of the measurement process show the effect of the single acquisition time on the FWHM of spin noise peak, further clarifying the reason why the spin noise spectrum measured by FFTsDAC2 is more accurate.
      通信作者: 姬扬, jiyang@semi.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2016YFA0301202)和国家自然科学基金(批准号:91321310,11404325)资助的课题.
      Corresponding author: Ji Yang, jiyang@semi.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2016YFA0301202) and the National Natural Science Foundation of China (Grant Nos. 91321310, 11404325).
    [1]

    Mller G M, Oestreich M, Rmer M, Hbner J 2010 Physica E 43 569

    [2]

    Crooker S A, Cheng L, Smith D L 2009 Phys. Rev. B 79 035208

    [3]

    Aleksanfrov E B, Zapassky V S 1981 JETP 81 132

    [4]

    Crooker S A, Rickel D G, Balatsky A V, Smith D L 2004 Nature 431 49

    [5]

    Oestreich M, Rmer M, Haug R J, Hgele D 2005 Phys. Rev. Lett. 95 216603

    [6]

    Rmer M, Hbner J, Oestreich M 2007 Rev. Sci. Instrum. 78 103903

    [7]

    Crooker S A, Brandt J, Sandfort C, Greilich A, Yakovlev D R, Reuter D, Wieck A D, Bayer M 2010 Phys. Rev. Lett. 104 036601

    [8]

    Mller G M, Rmer M, Hbner J, Oestreich M 2010 Appl. Phys. Lett. 97 192109

    [9]

    Quirk M P, Garyantes M F, Wilck H C, Grimm M J 1988 IEEE Trans. Acoust., Speech, Signal Processing 36 1854

    [10]

    Iglesias V, Grajal J, Snchez A, Vallejo M L 2015 IEEE Trans. Instrum. Meas. 64 338

    [11]

    Shi P, Ma J, Qian X, Ji Y, Li W 2017 Acta Phys. Sin. 66 017201 (in Chinese)[史平, 马健, 钱轩, 姬扬, 李伟 2017 物理学报 66 017201]

    [12]

    Shannon C E 1949 Proc. IRE 37 10

    [13]

    Demtrder W (translated by Ji Y) 2012 Laser Spectroscopy (4th Ed., Vol. 1) (Beijing:Science Press) pp162-163 (in Chinese)[戴姆特瑞德 著 (姬扬 译) 2012 激光光谱学:(原书第四版第1卷) (北京:科学出版社)第162163页]

    [14]

    Horn H, Mller G M, Rasel E M, Santos L, Hbner J, Oestreich M 2011 Phys. Rev. A 84 043851

    [15]

    Ma J, Shi P, Qian X, Li W, Ji Y 2016 Chin. Phys. B 25 117203

    [16]

    Arimondo E, Inguscio M, Violino P 1977 Rev. Mod. Phys. 49 31

    [17]

    Bize S, Sortais Y, Santos M S, Clairon A, Salomon C 1999 Europhys. Lett. 45 558

    [18]

    Zhu Y S 2006 Probability and Statistics in Experimental Physics (2nd Ed.) (Beijing:Science Press) pp431-433 (in Chinese)[朱永生 2006 实验物理中的概率和统计(第二版)(北京:科学出版社) 第431433]

    [19]

    Demtrder W (translated by Ji Y) 2012 Laser Spectroscopy (4th Ed., Vol. 1) (Beijing:Science Press) pp74-77 (in Chinese)[戴姆特瑞德 著(姬扬 译) 2012 激光光谱学 (原书第四版第1卷) (北京:科学出版社)第7477页]

  • [1]

    Mller G M, Oestreich M, Rmer M, Hbner J 2010 Physica E 43 569

    [2]

    Crooker S A, Cheng L, Smith D L 2009 Phys. Rev. B 79 035208

    [3]

    Aleksanfrov E B, Zapassky V S 1981 JETP 81 132

    [4]

    Crooker S A, Rickel D G, Balatsky A V, Smith D L 2004 Nature 431 49

    [5]

    Oestreich M, Rmer M, Haug R J, Hgele D 2005 Phys. Rev. Lett. 95 216603

    [6]

    Rmer M, Hbner J, Oestreich M 2007 Rev. Sci. Instrum. 78 103903

    [7]

    Crooker S A, Brandt J, Sandfort C, Greilich A, Yakovlev D R, Reuter D, Wieck A D, Bayer M 2010 Phys. Rev. Lett. 104 036601

    [8]

    Mller G M, Rmer M, Hbner J, Oestreich M 2010 Appl. Phys. Lett. 97 192109

    [9]

    Quirk M P, Garyantes M F, Wilck H C, Grimm M J 1988 IEEE Trans. Acoust., Speech, Signal Processing 36 1854

    [10]

    Iglesias V, Grajal J, Snchez A, Vallejo M L 2015 IEEE Trans. Instrum. Meas. 64 338

    [11]

    Shi P, Ma J, Qian X, Ji Y, Li W 2017 Acta Phys. Sin. 66 017201 (in Chinese)[史平, 马健, 钱轩, 姬扬, 李伟 2017 物理学报 66 017201]

    [12]

    Shannon C E 1949 Proc. IRE 37 10

    [13]

    Demtrder W (translated by Ji Y) 2012 Laser Spectroscopy (4th Ed., Vol. 1) (Beijing:Science Press) pp162-163 (in Chinese)[戴姆特瑞德 著 (姬扬 译) 2012 激光光谱学:(原书第四版第1卷) (北京:科学出版社)第162163页]

    [14]

    Horn H, Mller G M, Rasel E M, Santos L, Hbner J, Oestreich M 2011 Phys. Rev. A 84 043851

    [15]

    Ma J, Shi P, Qian X, Li W, Ji Y 2016 Chin. Phys. B 25 117203

    [16]

    Arimondo E, Inguscio M, Violino P 1977 Rev. Mod. Phys. 49 31

    [17]

    Bize S, Sortais Y, Santos M S, Clairon A, Salomon C 1999 Europhys. Lett. 45 558

    [18]

    Zhu Y S 2006 Probability and Statistics in Experimental Physics (2nd Ed.) (Beijing:Science Press) pp431-433 (in Chinese)[朱永生 2006 实验物理中的概率和统计(第二版)(北京:科学出版社) 第431433]

    [19]

    Demtrder W (translated by Ji Y) 2012 Laser Spectroscopy (4th Ed., Vol. 1) (Beijing:Science Press) pp74-77 (in Chinese)[戴姆特瑞德 著(姬扬 译) 2012 激光光谱学 (原书第四版第1卷) (北京:科学出版社)第7477页]

  • [1] 石中誉, 代旭城, 王浩宇, 麦展彰, 欧阳鹏辉, 王翼卓, 柴亚强, 韦联福, 刘旭明, 潘长钊, 郭伟杰, 舒诗博, 王轶文. 超导动态电感探测器的噪声谱分析. 物理学报, 2024, 73(3): 038501. doi: 10.7498/aps.73.20231504
    [2] 董大兴, 刘友文, 伏洋洋, 费越. 金属光栅异常透射增强黑磷烯法拉第旋转的理论研究. 物理学报, 2020, 69(23): 237802. doi: 10.7498/aps.69.20201056
    [3] 杨煜林, 白乐乐, 张露露, 何军, 温馨, 王军民. 铷原子系综自旋噪声谱实验研究. 物理学报, 2020, 69(23): 233201. doi: 10.7498/aps.69.20201103
    [4] 郭志超, 张桐耀, 张靖. 微米气室铯原子自旋噪声谱. 物理学报, 2020, 69(3): 037201. doi: 10.7498/aps.69.20191623
    [5] 蔡伟, 许友安, 杨志勇. 三价镨离子掺杂对铽镓石榴石晶体磁光性能影响的量子计算. 物理学报, 2019, 68(13): 137801. doi: 10.7498/aps.68.20190576
    [6] 张旭苹, 张益昕, 王峰, 单媛媛, 孙振鉷, 胡燕祝. 相位敏感型光时域反射传感系统光学背景噪声的产生机理及其抑制方法. 物理学报, 2017, 66(7): 070707. doi: 10.7498/aps.66.070707
    [7] 郑娟娟, 姚保利, 邵晓鹏. 基于光强传输方程相位成像的宽场相干反斯托克斯拉曼散射显微背景抑制. 物理学报, 2017, 66(11): 114206. doi: 10.7498/aps.66.114206
    [8] 史平, 马健, 钱轩, 姬扬, 李伟. 铷原子气体自旋噪声谱测量的信噪比分析. 物理学报, 2017, 66(1): 017201. doi: 10.7498/aps.66.017201
    [9] 董丽娟, 杜桂强, 杨成全, 石云龙. 厚金属Ag膜的磁光法拉第旋转效应的增强. 物理学报, 2012, 61(16): 164210. doi: 10.7498/aps.61.164210
    [10] 王建飞, 王潇, 罗洪, 孟洲. 基于法拉第旋镜的干涉型光纤传感系统偏振相位噪声特性研究. 物理学报, 2012, 61(15): 150701. doi: 10.7498/aps.61.150701
    [11] 杨明, 李香莲, 吴大进. 单模激光系统随机共振的模拟研究. 物理学报, 2012, 61(16): 160502. doi: 10.7498/aps.61.160502
    [12] 曹明涛, 邱淑伟, 郭文阁, 刘韬, 韩亮, 刘昊, 张沛, 张首刚, 高宏, 李福利. 铷原子蒸汽中的光偏振旋转效应. 物理学报, 2012, 61(16): 164208. doi: 10.7498/aps.61.164208
    [13] 滕利华, 王霞. 载流子复合对时间分辨法拉第旋转光谱的影响. 物理学报, 2011, 60(5): 057202. doi: 10.7498/aps.60.057202
    [14] 严卫, 陆文, 施健康, 任建奇, 王蕊. 法拉第旋转对空间被动微波遥感的影响及消除. 物理学报, 2011, 60(9): 099401. doi: 10.7498/aps.60.099401
    [15] 施振刚, 文伟, 谌雄文, 向少华, 宋克慧. 双量子点电荷比特的散粒噪声谱. 物理学报, 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [16] 刘江涛, 肖文波, 黄接辉, 于天宝, 邓新华. 反常色散材料光子晶体中光输运的光学控制. 物理学报, 2010, 59(3): 1665-1670. doi: 10.7498/aps.59.1665
    [17] 陈晓东, 肖邵军, 顾永建, 林秀敏. 基于法拉第旋转构造光子Bell态分析器和GHZ态分析器. 物理学报, 2010, 59(8): 5251-5255. doi: 10.7498/aps.59.5251
    [18] 于 飞, 陈 剑, 李卫兵, 陈心昭. 声场分离技术及其在近场声全息中的应用. 物理学报, 2005, 54(2): 789-797. doi: 10.7498/aps.54.789
    [19] 王焕元, 贾惟义, 沈建祥. Bi4Ge3O12晶体的磁光法拉第旋转. 物理学报, 1985, 34(1): 126-128. doi: 10.7498/aps.34.126
    [20] 黄武汉, 凌君达, 何章祥. Ni-Mg,Mg-Mn和Ni-Zn三种铁氧体在3厘米波段的法拉第旋转及衰耗. 物理学报, 1958, 14(6): 431-441. doi: 10.7498/aps.14.431
计量
  • 文章访问数:  6607
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-15
  • 修回日期:  2018-02-07
  • 刊出日期:  2019-04-20

/

返回文章
返回