搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光强传输方程相位成像的宽场相干反斯托克斯拉曼散射显微背景抑制

郑娟娟 姚保利 邵晓鹏

引用本文:
Citation:

基于光强传输方程相位成像的宽场相干反斯托克斯拉曼散射显微背景抑制

郑娟娟, 姚保利, 邵晓鹏

Nonresonant background suppression in wide-field Coherent anti-Stokes Raman scattering microscopy with transport of intensity equation based phase imaging

Zheng Juan-Juan, Yao Bao-Li, Shao Xiao-Peng
PDF
导出引用
  • 相干反斯托克斯拉曼散射(CARS)显微能够对样品的特殊化学组分进行选择性成像,无需荧光标记,在生物医学领域被广泛应用.然而,传统的CARS图像往往存在非共振背景信号.本文将基于光强传输方程的单光束相位成像技术用于CARS显微成像,来抑制CARS的非共振背景信号.该方法通过记录样品在三个相邻平面上的CARS图像,然后利用光强传输方程获取CARS光场的相位分布,最后利用共振CARS信号和非共振背景信号在相位上的差异,实现了对背景噪声的抑制.该方法无需参考光,通过三次测量可完成CARS的背景噪声抑制,具有良好的应用前景.
    Coherent anti-Stokes Raman scattering (CARS) microscopy is a valuable tool for label-free imaging of biological samples, since it enables providing contrast via vibrational resonances of a specific chemical bond. However, in a conventional CARS image the Raman resonant anti-Stokes radiation is often superimposed by a nonresonant contribution arising from the electronic part of the polarization. The situation becomes worse if a sample is composed of a significant amount of water, where a strong nonresonant background over the whole image is obtained.To date, various approaches including Epi, polarization sensitive, time-resolved, and CARS phase imaging have been implemented to suppress the undesirable nonresonant background in CARS microscopy. Notably, optical heterodyne based phase imaging schemes are of particular interest due to their intrinsic ability to retrieve Im(χ(3)), which is proportional to the Raman resonant signal. Nevertheless, all the reported phase imaging methods that require an independent reference wave lead to an increase in the setup complexity, thus making the measurement sensitive to external perturbations. In order to simplify the setup, single-beam scheme has also been utilized for vibrational CARS imaging by using wave-front sensors to acquire the phase of the complex anti-Stokes amplitude. However, this method demands highly accurate wave-front sensors.In this paper we present a reference-less CARS phase imaging technique to suppress nonresonant CARS background based on transport of intensity equation (TIE). Resonant CARS radiation ECARSR can be obtained when the frequency difference between the pump and Stokes beams is tuned to match a molecular vibration frequency (Raman resonant mode). In contrast, the nonresonant background ECARSNR can be obtained when the frequency difference between the pump and Stokes beams does not match a molecular vibration frequency (Raman resonant mode). Considering the fact that there is a phase shift of π/2 between the resonant and non-resonant CARS field, the phase imaging of both resonant and nonresonant CARS field can provide a background-free image. In implementation, three intensity images of the CARS field under resonant mode are recorded at three neighboring planes by moving the CCD camera along the axial direction. In the meantime, three images of the CARS field under non-resonant mode are also recorded. Considering the fact that the TIE links the intensity distributions in three neighboring planes (through which a beam transverses) with the phase distribution of the field, the phase images of the CARS field under both resonant and nonresonant modes are reconstructed from the recorded intensity images. The phase difference φχ between the resonant CARS field and the non-resonant CARS field is calculated. Eventually, the CARS background is efficiently suppressed by using the relation ICARSbf≅ICARSR·sin2φχ.Compared with conventional CARS background suppression techniques, the proposed method is robust against environmental disturbance, since it does not require an additional reference beam. Furthermore, the proposed method is easy to incorporate in a conventional CARS configuration. Therefore, the proposed method has the potential to become a versatile technique to image deep tissue with low background signal.
      通信作者: 姚保利, yaobl@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61605150,61475187,61575154,61377008)、中央高校基本科研业务费专项资金(批准号:JB160511,XJS16005,JBG160502)、 the “Thringer Ministerium fr Bildung,Wissenschaft und Kultur”(TMBWK,projects:B578-06001,14.90HWP,B714-07037),and the “Carl Zeiss Stiftung” and the Federal Ministry of Education and Research,Germany(FKZ:13N10508)资助的课题.
      Corresponding author: Yao Bao-Li, yaobl@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61605150, 61475187, 61575154, 61377008), the Fundamental Research Funds for the Central Universities, China (Grant Nos. JB160511, XJS16005, JBG160502), the 'Thringer Ministerium fr Bildung, Wissenschaft und Kultur' (TMBWK, projects: B578-06001, 14.90 HWP, B714-07037), and the 'Carl Zeiss Stiftung' and the Federal Ministry of Education and Research, Germany (FKZ: 13N10508).
    [1]

    Chen T, Yu Z L, Zhang X N, Xie X S, Huang Y Y 2011 Sci. China: Chem. 41 1 (in Chinese) [陈涛, 虞之龙, 张先念, 谢晓亮, 黄岩谊 2011 中国科学: 化学 41 1]

    [2]

    Zhang S W, Chen D N, Liu S L, Liu W, Niu H B 2015 Acta Phys. Sin. 64 223301 (in Chinese) [张赛文, 陈丹妮, 刘双龙, 刘伟, 牛憨笨 2015 物理学报 64 223301]

    [3]

    Volkmer A, Cheng J X, Xie X S 2001 Phys. Rev. Lett. 87 023901

    [4]

    Cheng J X, Book L D, Xie X S 2001 Opt. Lett. 26 1341

    [5]

    Volkmer A, Book L D, Xie X S 2002 Appl. Phys. Lett. 80 1505

    [6]

    Krishnamachari V V, Potma E O 2007 J. Opt. Soc. Am. A 24 1138

    [7]

    Potma E O, Evans C L, Xie X S 2006 Opt. Lett. 31 241

    [8]

    Jurna M, Korterik J P, Otto C, Offerhaus H L 2007 Opt. Express 15 15207

    [9]

    Jurna M, Korterik J P, Otto C, Herek J L, Offerhaus H L 2008 Opt. Express 16 15863

    [10]

    Jurna M, Korterik J P, Otto C, Herek J L, Offerhaus H L 2009 Phys. Rev. Lett. 103 043905

    [11]

    Evans C L, Potma E O, Xie X S 2004 Opt. Lett. 29 2923

    [12]

    Akimov D, Chatzipapadopoulos S, Meyer T, Tarcea N, Dietzek B, Schmitt M, Popp J 2009 J. Raman Spectrosc. 40 941

    [13]

    Berto P, Gachet D, Bon P, Monneret S, Rigneault H 2012 Phys. Rev. Lett. 109 093902

    [14]

    Berto P, Jesacher A, Roider C, Monneret S, Rigneault H, Ritsch-Marte M 2013 Opt. Lett. 38 709

    [15]

    Zheng J, Akimov D, Heuke S, Schmitt M, Yao B, Ye T, Lei M, Gao P, Popp J 2015 Opt. Express 23 10756

    [16]

    Teague M R 1983 J. Opt. Soc. Am. 73 1434

    [17]

    Roddier F 1988 Appl. Opt. 27 1223

    [18]

    Nugent K A, Gureyev T E, Cookson D F, Paganin D, Barnea Z 1996 Phys. Rev. Lett. 77 2961

    [19]

    McMahon P J, Allman B E, Jacobson D L, Arif M, Werner S A, Nugent K A 2003 Phys. Rev. Lett. 91 145502

    [20]

    Bajt S, Barty A, Nugent K A, McCartney M, Wall M, Paganin D 2000 Ultramicroscopy 83 67

    [21]

    Kou S S, Waller L, Barbastathis G, Sheppard C J R 2010 Opt. Lett. 35 447

    [22]

    Gorthi S S, Schonbrun E 2012 Opt. Lett. 37 707

    [23]

    Zuo C, Chen Q, Sun J S, Asund A 2016 Chin. J. Lasers 43 0609002 (in Chinese) [左超, 陈钱, 孙佳嵩, Asund A 2016 中国激光 43 0609002]

    [24]

    Teague M R 1982 J. Opt. Soc. Am. 72 1199

    [25]

    Frank J, Altmeyer S, Wernicke G 2010 J. Opt. Soc. Am. A 27 2244

    [26]

    Zuo C, Chen Q, Yu Y, Asundi A 2013 Opt. Express 21 5346

    [27]

    Frankot R T, Chellappa Z 1988 IEEE Trans. Patt. Anal. Mach. Intell. 10 439

    [28]

    Gao P, Pedrini G, Osten W 2013 Opt. Lett. 38 5204

    [29]

    Gao P, Pedrini G, Zuo C, Osten W 2014 Opt. Lett. 39 3615

    [30]

    Shi K, Li H, Xu Q, Psaltis D, Liu Z 2010 Phys. Rev. Lett. 104 093902

    [31]

    Gao P, Pedrini G, Osten W 2013 Opt. Lett. 38 1328

    [32]

    Popescu G, Ikeda T, Goda K, Best-Popescu C A, Laposata M, Manley S, Dasari R R, Badizadegan K, Feld M S 2006 Phys. Rev. Lett. 97 218101

    [33]

    Alexandrov S A, Hillman T R, Gutzler T, Sampson D D 2006 Phys. Rev. Lett. 97 168102

    [34]

    Barty A, Nugent K A, Paganin D, Roberts A 1998 Opt. Lett. 23 817

  • [1]

    Chen T, Yu Z L, Zhang X N, Xie X S, Huang Y Y 2011 Sci. China: Chem. 41 1 (in Chinese) [陈涛, 虞之龙, 张先念, 谢晓亮, 黄岩谊 2011 中国科学: 化学 41 1]

    [2]

    Zhang S W, Chen D N, Liu S L, Liu W, Niu H B 2015 Acta Phys. Sin. 64 223301 (in Chinese) [张赛文, 陈丹妮, 刘双龙, 刘伟, 牛憨笨 2015 物理学报 64 223301]

    [3]

    Volkmer A, Cheng J X, Xie X S 2001 Phys. Rev. Lett. 87 023901

    [4]

    Cheng J X, Book L D, Xie X S 2001 Opt. Lett. 26 1341

    [5]

    Volkmer A, Book L D, Xie X S 2002 Appl. Phys. Lett. 80 1505

    [6]

    Krishnamachari V V, Potma E O 2007 J. Opt. Soc. Am. A 24 1138

    [7]

    Potma E O, Evans C L, Xie X S 2006 Opt. Lett. 31 241

    [8]

    Jurna M, Korterik J P, Otto C, Offerhaus H L 2007 Opt. Express 15 15207

    [9]

    Jurna M, Korterik J P, Otto C, Herek J L, Offerhaus H L 2008 Opt. Express 16 15863

    [10]

    Jurna M, Korterik J P, Otto C, Herek J L, Offerhaus H L 2009 Phys. Rev. Lett. 103 043905

    [11]

    Evans C L, Potma E O, Xie X S 2004 Opt. Lett. 29 2923

    [12]

    Akimov D, Chatzipapadopoulos S, Meyer T, Tarcea N, Dietzek B, Schmitt M, Popp J 2009 J. Raman Spectrosc. 40 941

    [13]

    Berto P, Gachet D, Bon P, Monneret S, Rigneault H 2012 Phys. Rev. Lett. 109 093902

    [14]

    Berto P, Jesacher A, Roider C, Monneret S, Rigneault H, Ritsch-Marte M 2013 Opt. Lett. 38 709

    [15]

    Zheng J, Akimov D, Heuke S, Schmitt M, Yao B, Ye T, Lei M, Gao P, Popp J 2015 Opt. Express 23 10756

    [16]

    Teague M R 1983 J. Opt. Soc. Am. 73 1434

    [17]

    Roddier F 1988 Appl. Opt. 27 1223

    [18]

    Nugent K A, Gureyev T E, Cookson D F, Paganin D, Barnea Z 1996 Phys. Rev. Lett. 77 2961

    [19]

    McMahon P J, Allman B E, Jacobson D L, Arif M, Werner S A, Nugent K A 2003 Phys. Rev. Lett. 91 145502

    [20]

    Bajt S, Barty A, Nugent K A, McCartney M, Wall M, Paganin D 2000 Ultramicroscopy 83 67

    [21]

    Kou S S, Waller L, Barbastathis G, Sheppard C J R 2010 Opt. Lett. 35 447

    [22]

    Gorthi S S, Schonbrun E 2012 Opt. Lett. 37 707

    [23]

    Zuo C, Chen Q, Sun J S, Asund A 2016 Chin. J. Lasers 43 0609002 (in Chinese) [左超, 陈钱, 孙佳嵩, Asund A 2016 中国激光 43 0609002]

    [24]

    Teague M R 1982 J. Opt. Soc. Am. 72 1199

    [25]

    Frank J, Altmeyer S, Wernicke G 2010 J. Opt. Soc. Am. A 27 2244

    [26]

    Zuo C, Chen Q, Yu Y, Asundi A 2013 Opt. Express 21 5346

    [27]

    Frankot R T, Chellappa Z 1988 IEEE Trans. Patt. Anal. Mach. Intell. 10 439

    [28]

    Gao P, Pedrini G, Osten W 2013 Opt. Lett. 38 5204

    [29]

    Gao P, Pedrini G, Zuo C, Osten W 2014 Opt. Lett. 39 3615

    [30]

    Shi K, Li H, Xu Q, Psaltis D, Liu Z 2010 Phys. Rev. Lett. 104 093902

    [31]

    Gao P, Pedrini G, Osten W 2013 Opt. Lett. 38 1328

    [32]

    Popescu G, Ikeda T, Goda K, Best-Popescu C A, Laposata M, Manley S, Dasari R R, Badizadegan K, Feld M S 2006 Phys. Rev. Lett. 97 218101

    [33]

    Alexandrov S A, Hillman T R, Gutzler T, Sampson D D 2006 Phys. Rev. Lett. 97 168102

    [34]

    Barty A, Nugent K A, Paganin D, Roberts A 1998 Opt. Lett. 23 817

  • [1] 杨文斌, 张华磊, 齐新华, 车庆丰, 周江宁, 白冰, 陈爽, 母金河. 非平衡等离子体流场相干反斯托克斯拉曼散射光谱计算及振转温度测量. 物理学报, 2024, 73(15): 154202. doi: 10.7498/aps.73.20240455
    [2] 田子阳, 赵会杰, 尉昊赟, 李岩. 基于混合飞秒/皮秒相干反斯托克斯拉曼散射的动态高温燃烧场温度测量. 物理学报, 2021, 70(21): 214203. doi: 10.7498/aps.70.20211144
    [3] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底. 物理学报, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [4] 彭亚晶, 孙爽, 宋云飞, 杨延强. 液相硝基甲烷分子振动特性的相干反斯托克斯拉曼散射光谱. 物理学报, 2018, 67(2): 024208. doi: 10.7498/aps.67.20171828
    [5] 尚雅轩, 马健, 史平, 钱轩, 李伟, 姬扬. 铷原子气体自旋噪声谱的测量与改进. 物理学报, 2018, 67(8): 087201. doi: 10.7498/aps.67.20180098
    [6] 张旭苹, 张益昕, 王峰, 单媛媛, 孙振鉷, 胡燕祝. 相位敏感型光时域反射传感系统光学背景噪声的产生机理及其抑制方法. 物理学报, 2017, 66(7): 070707. doi: 10.7498/aps.66.070707
    [7] 侯国辉, 罗腾, 陈秉灵, 刘杰, 林子扬, 陈丹妮, 屈军乐. 双光子荧光与相干反斯托克斯拉曼散射显微成像技术的实验研究. 物理学报, 2017, 66(10): 104204. doi: 10.7498/aps.66.104204
    [8] 潘聪, 郭立, 沈毅, 严雪过, 丁志华, 李鹏. 基于界面信号的扫频光学相干层析成像系统相位矫正方法. 物理学报, 2016, 65(1): 014201. doi: 10.7498/aps.65.014201
    [9] 刘双龙, 刘伟, 陈丹妮, 屈军乐, 牛憨笨. 相干反斯托克斯拉曼散射显微成像技术研究. 物理学报, 2016, 65(6): 064204. doi: 10.7498/aps.65.064204
    [10] 曹蓓, 罗秀娟, 陈明徕, 张羽. 相干场成像全相位目标直接重构法. 物理学报, 2015, 64(12): 124205. doi: 10.7498/aps.64.124205
    [11] 曹蓓, 罗秀娟, 司庆丹, 曾志红. 相干场成像四光束相位闭合算法研究. 物理学报, 2015, 64(5): 054204. doi: 10.7498/aps.64.054204
    [12] 张赛文, 陈丹妮, 刘双龙, 刘伟, 牛憨笨. 纳米分辨相干反斯托克斯拉曼散射显微成像. 物理学报, 2015, 64(22): 223301. doi: 10.7498/aps.64.223301
    [13] 李亚晖, 梁闰富, 邱俊鹏, 林子扬, 屈军乐, 刘立新, 尹君, 牛憨笨. 紧聚焦条件下相干反斯托克斯拉曼散射信号场的矢量分析. 物理学报, 2014, 63(23): 233301. doi: 10.7498/aps.63.233301
    [14] 尹君, 余锋, 侯国辉, 梁闰富, 田宇亮, 林子扬, 牛憨笨. 多色宽带相干反斯托克斯拉曼散射过程的理论与实验研究. 物理学报, 2014, 63(7): 073301. doi: 10.7498/aps.63.073301
    [15] 刘双龙, 刘伟, 陈丹妮, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术中空心光束的形成. 物理学报, 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [16] 刘国忠, 周哲海, 邱钧, 王晓飞, 刘桂礼, 王瑞康. 幅值和相位配准技术及其在光学相干层析血流成像中的应用. 物理学报, 2013, 62(15): 158702. doi: 10.7498/aps.62.158702
    [17] 刘伟, 陈丹妮, 刘双龙, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术及其探测极限分析. 物理学报, 2013, 62(16): 164202. doi: 10.7498/aps.62.164202
    [18] 杨明, 李香莲, 吴大进. 单模激光系统随机共振的模拟研究. 物理学报, 2012, 61(16): 160502. doi: 10.7498/aps.61.160502
    [19] 于凌尧, 尹君, 万辉, 刘星, 屈军乐, 牛憨笨, 林子扬. 基于超连续光谱激发的时间分辨相干反斯托克斯拉曼散射方法与实验研究. 物理学报, 2010, 59(8): 5406-5411. doi: 10.7498/aps.59.5406
    [20] 于 飞, 陈 剑, 李卫兵, 陈心昭. 声场分离技术及其在近场声全息中的应用. 物理学报, 2005, 54(2): 789-797. doi: 10.7498/aps.54.789
计量
  • 文章访问数:  6186
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-17
  • 修回日期:  2017-03-31
  • 刊出日期:  2017-06-05

/

返回文章
返回