搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面水与催化

胡钧 高嶷

引用本文:
Citation:

界面水与催化

胡钧, 高嶷

Interfacial water and catalysis

Hu Jun, Gao Yi
PDF
导出引用
  • 水的催化反应在界面进行,对新能源开发和环境保护等领域具有至关重要的作用.理解催化反应中材料界面水分子的结构、物性和分子机制,对于解决清洁能源、污水处理等关系国计民生的重大问题具有关键意义.由于水的复杂性,对于水分子在催化反应中的作用至今仍存在很大争议.界面水分子在催化反应中作为反应物、催化剂、溶剂,或是兼而有之,一直是科学界争论的热点话题.近年来,随着原位实验技术和计算机能力的快速提高,人们已经能够在原子尺度对催化反应中的界面水分子行为进行实时观测和理论模拟,为解析水在催化反应中的作用提供了实验依据和理论基础.本文简述当前催化反应中界面水研究面临的巨大机遇和挑战,以及现有实验和理论方法的最新进展和所遇到的困难,为设计优化与水应用相关的高效催化剂提供可行的思路.
    Catalysis of water, normally occurring at the interface, is crucial for the development of renewable energy and the environmental protection. Understanding the structures and chemical/physical properties of interfacial water during catalysis is of paramount importance for the sustainable development of human society, such as clean energy, wastewater treatment, and etc. However, owing to its complexity structure and mysterious property, the effect of water during catalysis is still an open question. The role of water during reactions, as reactant, catalyst, solvent, or both, has not been resolved. Recently, with the fast-development of in-situ experimental techniques and the computational capacity, the scientists started to investigate the behaviors of interfacial water using the real-time characterization and theoretical modeling at the atomic level, which provides the evidences and pictures to understand the effects of interfacial water. This paper will briefly introduce the current opportunities and challenges in studying the interfacial water, and the latest development and facing difficulty in experiment and theory, which will be beneficial for the future design of efficient catalysts for their applications in water.
    [1]

    Eizember T R 2010 EIA 2010 Energy Conference: Short-Term Stresses, Long-Term Change Washington, DC, USA, April 6-7, 2010

    [2]

    Malyshkina N, Niemeier D 2010 Environ. Sci. Technol. 44 9134

    [3]

    Sustainability and Energy 2007 Science 315 721

    [4]

    Whitesides G M, Crabtree G W 2007 Science 315 796

    [5]

    Satterfield C 1996 Heterogeneous Catalysis in Industrial Practice (2nd Ed.) (Malabar, FL: Krieger Publishing Company)

    [6]

    Kanan M W, Nocera D G 2008 Science 321 1072

    [7]

    Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253

    [8]

    Meyer T J 2008 Nature 451 778

    [9]

    Daté M, Okumura M, Tsubota S, Haruta M 2004 Angew. Chem. Int. Ed. 43 2129

    [10]

    Bond G C, Thompson D T 2000 Gold Bull. 33 41

    [11]

    Gao Y, Zeng X C 2012 ACS Catalysis 2 2614

    [12]

    Cheng Y, Zheng G, Wei C, Mu Q, Zheng B, Wang Z, Gao M, Zhang Q, He K, Carmichael G 2016 Sci. Adv. 2 e1601530

    [13]

    Zhang L, Liu L, Zhao Y, Gong S, Zhang X, Henze D K, Capps S L, Fu T M, Zhang Q, Wang Y 2015 Environ. Res. Lett. 10 084011

    [14]

    Xue J, Yuan Z, Griffith S M, Yu X, Lau A K, Yu J Z 2016 Environ. Sci. Technol. 50 7325

    [15]

    Percastegui E G, Mosquera J, Nitschke J R 2017 Angew. Chem. Int. Ed. 56 9136

    [16]

    Egorova K S, Ananikov V P 2016 Angew. Chem. Int. Ed. 55 12150

    [17]

    Lee K M, Lai C W, Ngai K S, Juan J C 2016 Water. Res. 88 428

    [18]

    Varshney G, Kanel S R, Kempisty D M, Varshney V, Agrawal A, Sahle-Demessie E, Varma R S, Nadagouda M N 2016 Coord. Chem. Rev. 306 43

    [19]

    Qu Y, Duan X 2013 Chem. Soc. Rev. 422 568

    [20]

    Herrmann J M 1999 Catal. Today 53 115

    [21]

    Lasia A 2003 Handbook of Fuel Cells: Fundamentals, Technology and Applications (Vol. 2) (Chichester, UK: Wiley) p416

    [22]

    Primo A, Marino T, Corma T, Molinari R, Garcia H 2011 J. Am. Chem. Soc. 133 6930

    [23]

    Yang X Y, Wolcott A, Wang G M, Sobo A, Fitzmorris R C, Qian F, Zhang J Z, Li Y 2009 Nano Lett. 9 2331

    [24]

    Parkinson G S, Novotny Z, Jacobson P, Schmid M, Diebold U 2011 J. Am. Chem. Soc. 133 12650

    [25]

    Jaramillo T F, Jørgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff L 2007 Science 317 100

    [26]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I, Norskov J K 2006 Nature Mater. 5 909

    [27]

    Kaneko H, Miura T, Fuse A, Ishihara H, Taku S, Fukuzumi H, Naganuma Y, Tamaura Y 2007 Energy & Fuels 21 2287

    [28]

    Dinca M, Surendranath Y, Nocera D G 2010 Proc. Nat. Acad. Sci. U.S.A. 107 10337

    [29]

    Reece S Y, Hamel J A, Sung K, Jarvi T, Esswein A J, Pijpers J J H, Nocera D G 2011 Science 334 645

    [30]

    Subbaraman R, Tripkovic D, Strmcnik D, Chang K C, Uchimura M, Paulikas A P, Stamenkovic V, Markovic N M 2011 Science 334 1256

    [31]

    Esposito D V, Hunt S T, Kimmel Y C, Chen J G 2012 J. Am. Chem. Soc. 134 3025

    [32]

    Fu Q, Saltsburg H, Flytzani-Stephanopoulos M 2003 Science 301 935

    [33]

    Rodriguez J A, Ma S, Liu P, Hrbek J, Evans J, Pérez M 2007 Science 318 1757

    [34]

    Valdés Á, Brillet J, Grätzel M, Gudmundsdótir H, Hansen H A, Jónsson H, Klüpfel P, Kroes G J, Formal F L, Man I C, Martins R S, Nørskov J K, Rossmeisl J, Sivula K, Vojvodic A, Zäch M 2012 Phys. Chem. Chem. Phys. 14 49

    [35]

    Asadi M, Kim K, Liu C, Addepalli A V, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato J M, Haasch R, Zapol P, Kumar B, Klie R F, Abiade J, Curtiss L A, Salehi-Khojin A 2016 Science 353 467

    [36]

    Angamuthu R, Byers P, Lutz M, Spek A L, Bouwman E 2010 Science 327 313

    [37]

    Halmann M 1978 Nature 275 115

    [38]

    Kanan M W, Nocera D G 2008 Science 321 1072

    [39]

    Reece S Y, Hamel J A, Sung K, Jarvi T, Esswein A J, Pijpers J J H, Nocera D G 2011 Science 334 645

    [40]

    Liu C, Colón B C, Ziesack M, Silver P A, Nocera D G 2016 Science 352 1210

    [41]

    Niu K, Xu Y, Wang H, Ye R, Xin H L, Lin F, Tian C, Lum Y, Bustillo K C, Doeff M M, Koper M T M, Ager J, Xu R, Zheng H 2017 Sci. Adv. 3 e1700921

    [42]

    Zhang X, Qin J, Hao R, Wang L, Shen X, Yu R, Limpanart S, Ma M, Liu R 2015 J. Phys. Chem. C 119 20544

    [43]

    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269

    [44]

    Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai S C 2015 J. Photochem. Photobiol. C 25 1

    [45]

    Di J, Xia J, Ji M, Wang B, Yin S, Zhang Q, Chen Z, Li H 2015 ACS Appl. Mater. Interfaces 7 20111

    [46]

    Jia X, Cao J, Lin H, Chen Y, Fu W, Chen S 2015 J. Mol. Catal. A: Chem. 409 94

    [47]

    Benjwal P, Kar K K 2015 J. Environ. Chem. Eng. 3 2076

    [48]

    Wang H, Dong S, Chang Y, Faria J L 2012 J. Hazard. Mater. 235 230

    [49]

    Hamid S B A, Das R, Ali M E 2014 Adv. Mater. Res. 925 48

    [50]

    Chen X, Liu L, Peter Y Y, Mao S S 2011 Science 331 746

    [51]

    Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris R C, Wang C, Zhang J Z, Li Y 2011 Nano Lett. 11 3026

    [52]

    Li Y H, Cheng S W, Yuan C S, Lai T F, Hung C H 2018 Chemosphere 208 808

    [53]

    Cheng W, Quan X J, Li R H, Wu J, Zhao Q H 2018 Ozone Sci. Eng. 40 173

    [54]

    Liu Y H, Lin H, Dong Y B, Li B, Wang L, Chu S Y, Luo M K, Liu J F 2018 Chem. Eng. J. 347 669

    [55]

    Duca M, Koper M T M 2012 Energy Environ. Sci. 5 9726

    [56]

    Mott N F, Watts-Tobin R J 1961 Electrochim. Acta 4 79

    [57]

    Bockris J O’M, Habib M A 1975 J. Electroanal. Chem. 65 473

    [58]

    Bockris J O'M, Khan S U M 1993 Surface Electrochemistry (New York: Plenum Press) Ch. 2 and references therein

    [59]

    Bewick A, Kunimatsu K, Robinson J, Russell J W 1981 J. Electroanal. Chem. 276 175

    [60]

    Bewick A 1983 J. Electroanal. Chem. 150 481

    [61]

    Bewick A, Kunimatsu K 1980 Surface Sci. 101 131

    [62]

    Kunimatsu K, Bewick A 1986 Indian J. Tech. 24 407

    [63]

    Shingaya Y, Hirota K, Ogasawara H, Ito M 1986 J. Electroanal. Chem. 409 103

    [64]

    Ataka K, Yostuyanagi T, Osawa M 1996 J. Phys. Chem. 100 10664

    [65]

    Shen Y R 1989 Nature 337 519

    [66]

    Liu W T, Shen Y R 2014 Proc. Natl. Acad. Soc. U.S.A. 111 1293

    [67]

    Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R, Tian Z Q 2016 Nature Rev. Mater. 1 16021

    [68]

    Stöckle R M, Shu Y D, Deckert V, Zenobi R 2000 Chem. Phys. Lett. 318 131

    [69]

    Anderson M S 2000 Appl. Phys. Lett. 76 3130

    [70]

    Hayazawa N, Inouye Y, Sekkat Z, Kawata S 2000 Opt. Commun. 183 333

    [71]

    Pettinger B, Picardi G, Schuster R, Ertl G 2000 Electrochemistry 68 942

    [72]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392

    [73]

    Shpigel N, Levi M D, Sigalov S, Girshevitz O, Aurbach D, Daikhin L, Pikma P, Marandi M, Jänes A, Lust E, Jäckel N, Presser V 2016 Nature Mater. 15 570

    [74]

    Bikondoa O, Pang C L, Ithnin R, Muryn C A, Onishi H, Thornton G 2006 Nature Mater. 5 189

    [75]

    Merte L R, Peng G W, Bechstein R, Rieboldt F, Farberow C A, Grabow L C, Kudernatsch W, Wendt S, Laegsgaard E, Mavrikakis M, Besenbacher F 2012 Science 336 889

    [76]

    Guo J, Meng X Z, Chen J, Peng J B, Sheng J M, Li X Z, Xu L M, Shi J R, Wang E G, Jiang Y 2014 Nature Mater. 13 184

    [77]

    Guo J, Lu J T, Feng Y X, Chen J, Peng J B, Lin Z R, Meng X Z, Wang Z C, Li X Z, Wang E G, Jiang Y 2016 Science 352 321

    [78]

    Peng J B, Cao D Y, He Z L, Guo J, Hapala P, Ma R Z, Cheng B W, Chen J, Xie W J, Li X Z, Jelinek P, Xu L M, Gao Y Q, Wang E G, Jiang Y 2018 Nature 557 701

    [79]

    Hansen P L, Wagner J B, Helveg S, Rostrup-Nielsen J R, Clausen B S, Topsoe H 2002 Science 295 2053

    [80]

    Nolte P, Stierle A, Jin-Phillipp N Y, Kasper N, Schulli T U, Dosch H 2008 Science 321 1654

    [81]

    Tao F, Dag S, Wang L W, Liu Z, Butcher D R, Bluhm H, Salmeron M, Somorjai G A 2010 Science 327 850

    [82]

    Tao F, Grass M E, Zhang Y, Butcher D R, Renzas J R, Liu Z, Chung J Y, Mun B S, Salmeron M, Somorjai G A 2008 Science 322 932

    [83]

    Zhang X, Meng J, Zhu B, Yuan W, Yang H, Zhang Z, Gao Y, Wang Y 2018 Chem. Comm. 54 8587

    [84]

    Zheng H M, Smith R K, Jun Y W, Kisielowski, C, Dahmen U, Alivisatos, A P 2009 Science 324 1309

    [85]

    Liao H G, Cui L K, Whitelam S, Zheng H M 2012 Science 336 1011

    [86]

    Liao H G, Zherebetskyy D, Xin H L, Czarnik C, Ercius P, Elmlund H, Pan M, Wang L W, Zheng H M 2014 Science 345 916

    [87]

    Mirsaidov U, Mokkapati V R S S, Bhattacharya D, Andersen H, Bosman M, Ozyilmaz B, Matsudaira P 2013 Lab Chip 13 2874

    [88]

    Smeets P J M, Cho K R, Kempen R G E, Sommerdijk N A J M, de Yoreo J J 2015 Nat. Mater. 14 394

    [89]

    Chee S W, Pratt S H, Hattar K, Duquette D, Ross F M, Hull R 2015 Chem. Comm. 51 168

    [90]

    Loh N D, Sen S, Bosman M, Tan S F, Zhong J, Nijhuis C A, Král P, Matsudaira P, Mirsaidov U 2017 Nature Chem. 9 77

    [91]

    Pham T A, Govoni M, Seidel R, Bradforth S E, Schwegler E, Galli G 2017 Sci. Adv. 3 e1603210

    [92]

    Zeng Z H, Chang K C, Kubal J, Markovic N M, Greeley J 2017 Nature Energy 2 17070

    [93]

    Luo L L, Su M, Yan P F, Zou L F, Schreiber D K, Baer D R, Zhu Z H, Zhou G W, Wang Y T, Bruemmer S M, Xu Z J, Wang C M 2018 Nature Mater. 17 514

    [94]

    Tuckerman M, Laasonen K, Sprik M, Parrinello M 1995 J. Chem. Phys. 103 150

    [95]

    Marx D, Tuckerman M E, Hutter J, Parrinello M 1999 Nature 397 601

    [96]

    Vittadini A, Selloni A, Rotzinger F P, Gratzel M 1998 Phys. Rev. Lett. 81 2954

    [97]

    Meng S, Xu L F, Wang E G, Gao S W 2002 Phys. Rev. Lett. 89 176104

    [98]

    Wang C L, Lu H J, Wang Z G, Xiu P, Zhou B, Zuo G H, Wang R Z, Hu J Z, Fang H P 2009 Phys. Rev. Lett. 103 137801

    [99]

    Guo P, Tu Y S, Yang J R, Wang C L, Sheng N, Fang H P 2015 Phys. Rev. Lett. 115 186101

    [100]

    Zhu B, Xu Z, Wang C L, Gao Y 2016 Nano Lett. 16 2628.

    [101]

    Duan M, Yu J, Meng J, Zhu B, Wang Y, Gao Y 2018 Angew. Chem. Int. Ed. 57 6464

    [102]

    Lohse D, Zhang X H 2015 Rev. Mod. Phys. 87 981

    [103]

    Smith W, Lam R K, Shih O, Rizzuto A M, Prendergast D, Saykally R J 2015 J. Chem. Phys. 143 084503

  • [1]

    Eizember T R 2010 EIA 2010 Energy Conference: Short-Term Stresses, Long-Term Change Washington, DC, USA, April 6-7, 2010

    [2]

    Malyshkina N, Niemeier D 2010 Environ. Sci. Technol. 44 9134

    [3]

    Sustainability and Energy 2007 Science 315 721

    [4]

    Whitesides G M, Crabtree G W 2007 Science 315 796

    [5]

    Satterfield C 1996 Heterogeneous Catalysis in Industrial Practice (2nd Ed.) (Malabar, FL: Krieger Publishing Company)

    [6]

    Kanan M W, Nocera D G 2008 Science 321 1072

    [7]

    Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253

    [8]

    Meyer T J 2008 Nature 451 778

    [9]

    Daté M, Okumura M, Tsubota S, Haruta M 2004 Angew. Chem. Int. Ed. 43 2129

    [10]

    Bond G C, Thompson D T 2000 Gold Bull. 33 41

    [11]

    Gao Y, Zeng X C 2012 ACS Catalysis 2 2614

    [12]

    Cheng Y, Zheng G, Wei C, Mu Q, Zheng B, Wang Z, Gao M, Zhang Q, He K, Carmichael G 2016 Sci. Adv. 2 e1601530

    [13]

    Zhang L, Liu L, Zhao Y, Gong S, Zhang X, Henze D K, Capps S L, Fu T M, Zhang Q, Wang Y 2015 Environ. Res. Lett. 10 084011

    [14]

    Xue J, Yuan Z, Griffith S M, Yu X, Lau A K, Yu J Z 2016 Environ. Sci. Technol. 50 7325

    [15]

    Percastegui E G, Mosquera J, Nitschke J R 2017 Angew. Chem. Int. Ed. 56 9136

    [16]

    Egorova K S, Ananikov V P 2016 Angew. Chem. Int. Ed. 55 12150

    [17]

    Lee K M, Lai C W, Ngai K S, Juan J C 2016 Water. Res. 88 428

    [18]

    Varshney G, Kanel S R, Kempisty D M, Varshney V, Agrawal A, Sahle-Demessie E, Varma R S, Nadagouda M N 2016 Coord. Chem. Rev. 306 43

    [19]

    Qu Y, Duan X 2013 Chem. Soc. Rev. 422 568

    [20]

    Herrmann J M 1999 Catal. Today 53 115

    [21]

    Lasia A 2003 Handbook of Fuel Cells: Fundamentals, Technology and Applications (Vol. 2) (Chichester, UK: Wiley) p416

    [22]

    Primo A, Marino T, Corma T, Molinari R, Garcia H 2011 J. Am. Chem. Soc. 133 6930

    [23]

    Yang X Y, Wolcott A, Wang G M, Sobo A, Fitzmorris R C, Qian F, Zhang J Z, Li Y 2009 Nano Lett. 9 2331

    [24]

    Parkinson G S, Novotny Z, Jacobson P, Schmid M, Diebold U 2011 J. Am. Chem. Soc. 133 12650

    [25]

    Jaramillo T F, Jørgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff L 2007 Science 317 100

    [26]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I, Norskov J K 2006 Nature Mater. 5 909

    [27]

    Kaneko H, Miura T, Fuse A, Ishihara H, Taku S, Fukuzumi H, Naganuma Y, Tamaura Y 2007 Energy & Fuels 21 2287

    [28]

    Dinca M, Surendranath Y, Nocera D G 2010 Proc. Nat. Acad. Sci. U.S.A. 107 10337

    [29]

    Reece S Y, Hamel J A, Sung K, Jarvi T, Esswein A J, Pijpers J J H, Nocera D G 2011 Science 334 645

    [30]

    Subbaraman R, Tripkovic D, Strmcnik D, Chang K C, Uchimura M, Paulikas A P, Stamenkovic V, Markovic N M 2011 Science 334 1256

    [31]

    Esposito D V, Hunt S T, Kimmel Y C, Chen J G 2012 J. Am. Chem. Soc. 134 3025

    [32]

    Fu Q, Saltsburg H, Flytzani-Stephanopoulos M 2003 Science 301 935

    [33]

    Rodriguez J A, Ma S, Liu P, Hrbek J, Evans J, Pérez M 2007 Science 318 1757

    [34]

    Valdés Á, Brillet J, Grätzel M, Gudmundsdótir H, Hansen H A, Jónsson H, Klüpfel P, Kroes G J, Formal F L, Man I C, Martins R S, Nørskov J K, Rossmeisl J, Sivula K, Vojvodic A, Zäch M 2012 Phys. Chem. Chem. Phys. 14 49

    [35]

    Asadi M, Kim K, Liu C, Addepalli A V, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato J M, Haasch R, Zapol P, Kumar B, Klie R F, Abiade J, Curtiss L A, Salehi-Khojin A 2016 Science 353 467

    [36]

    Angamuthu R, Byers P, Lutz M, Spek A L, Bouwman E 2010 Science 327 313

    [37]

    Halmann M 1978 Nature 275 115

    [38]

    Kanan M W, Nocera D G 2008 Science 321 1072

    [39]

    Reece S Y, Hamel J A, Sung K, Jarvi T, Esswein A J, Pijpers J J H, Nocera D G 2011 Science 334 645

    [40]

    Liu C, Colón B C, Ziesack M, Silver P A, Nocera D G 2016 Science 352 1210

    [41]

    Niu K, Xu Y, Wang H, Ye R, Xin H L, Lin F, Tian C, Lum Y, Bustillo K C, Doeff M M, Koper M T M, Ager J, Xu R, Zheng H 2017 Sci. Adv. 3 e1700921

    [42]

    Zhang X, Qin J, Hao R, Wang L, Shen X, Yu R, Limpanart S, Ma M, Liu R 2015 J. Phys. Chem. C 119 20544

    [43]

    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269

    [44]

    Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai S C 2015 J. Photochem. Photobiol. C 25 1

    [45]

    Di J, Xia J, Ji M, Wang B, Yin S, Zhang Q, Chen Z, Li H 2015 ACS Appl. Mater. Interfaces 7 20111

    [46]

    Jia X, Cao J, Lin H, Chen Y, Fu W, Chen S 2015 J. Mol. Catal. A: Chem. 409 94

    [47]

    Benjwal P, Kar K K 2015 J. Environ. Chem. Eng. 3 2076

    [48]

    Wang H, Dong S, Chang Y, Faria J L 2012 J. Hazard. Mater. 235 230

    [49]

    Hamid S B A, Das R, Ali M E 2014 Adv. Mater. Res. 925 48

    [50]

    Chen X, Liu L, Peter Y Y, Mao S S 2011 Science 331 746

    [51]

    Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris R C, Wang C, Zhang J Z, Li Y 2011 Nano Lett. 11 3026

    [52]

    Li Y H, Cheng S W, Yuan C S, Lai T F, Hung C H 2018 Chemosphere 208 808

    [53]

    Cheng W, Quan X J, Li R H, Wu J, Zhao Q H 2018 Ozone Sci. Eng. 40 173

    [54]

    Liu Y H, Lin H, Dong Y B, Li B, Wang L, Chu S Y, Luo M K, Liu J F 2018 Chem. Eng. J. 347 669

    [55]

    Duca M, Koper M T M 2012 Energy Environ. Sci. 5 9726

    [56]

    Mott N F, Watts-Tobin R J 1961 Electrochim. Acta 4 79

    [57]

    Bockris J O’M, Habib M A 1975 J. Electroanal. Chem. 65 473

    [58]

    Bockris J O'M, Khan S U M 1993 Surface Electrochemistry (New York: Plenum Press) Ch. 2 and references therein

    [59]

    Bewick A, Kunimatsu K, Robinson J, Russell J W 1981 J. Electroanal. Chem. 276 175

    [60]

    Bewick A 1983 J. Electroanal. Chem. 150 481

    [61]

    Bewick A, Kunimatsu K 1980 Surface Sci. 101 131

    [62]

    Kunimatsu K, Bewick A 1986 Indian J. Tech. 24 407

    [63]

    Shingaya Y, Hirota K, Ogasawara H, Ito M 1986 J. Electroanal. Chem. 409 103

    [64]

    Ataka K, Yostuyanagi T, Osawa M 1996 J. Phys. Chem. 100 10664

    [65]

    Shen Y R 1989 Nature 337 519

    [66]

    Liu W T, Shen Y R 2014 Proc. Natl. Acad. Soc. U.S.A. 111 1293

    [67]

    Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R, Tian Z Q 2016 Nature Rev. Mater. 1 16021

    [68]

    Stöckle R M, Shu Y D, Deckert V, Zenobi R 2000 Chem. Phys. Lett. 318 131

    [69]

    Anderson M S 2000 Appl. Phys. Lett. 76 3130

    [70]

    Hayazawa N, Inouye Y, Sekkat Z, Kawata S 2000 Opt. Commun. 183 333

    [71]

    Pettinger B, Picardi G, Schuster R, Ertl G 2000 Electrochemistry 68 942

    [72]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392

    [73]

    Shpigel N, Levi M D, Sigalov S, Girshevitz O, Aurbach D, Daikhin L, Pikma P, Marandi M, Jänes A, Lust E, Jäckel N, Presser V 2016 Nature Mater. 15 570

    [74]

    Bikondoa O, Pang C L, Ithnin R, Muryn C A, Onishi H, Thornton G 2006 Nature Mater. 5 189

    [75]

    Merte L R, Peng G W, Bechstein R, Rieboldt F, Farberow C A, Grabow L C, Kudernatsch W, Wendt S, Laegsgaard E, Mavrikakis M, Besenbacher F 2012 Science 336 889

    [76]

    Guo J, Meng X Z, Chen J, Peng J B, Sheng J M, Li X Z, Xu L M, Shi J R, Wang E G, Jiang Y 2014 Nature Mater. 13 184

    [77]

    Guo J, Lu J T, Feng Y X, Chen J, Peng J B, Lin Z R, Meng X Z, Wang Z C, Li X Z, Wang E G, Jiang Y 2016 Science 352 321

    [78]

    Peng J B, Cao D Y, He Z L, Guo J, Hapala P, Ma R Z, Cheng B W, Chen J, Xie W J, Li X Z, Jelinek P, Xu L M, Gao Y Q, Wang E G, Jiang Y 2018 Nature 557 701

    [79]

    Hansen P L, Wagner J B, Helveg S, Rostrup-Nielsen J R, Clausen B S, Topsoe H 2002 Science 295 2053

    [80]

    Nolte P, Stierle A, Jin-Phillipp N Y, Kasper N, Schulli T U, Dosch H 2008 Science 321 1654

    [81]

    Tao F, Dag S, Wang L W, Liu Z, Butcher D R, Bluhm H, Salmeron M, Somorjai G A 2010 Science 327 850

    [82]

    Tao F, Grass M E, Zhang Y, Butcher D R, Renzas J R, Liu Z, Chung J Y, Mun B S, Salmeron M, Somorjai G A 2008 Science 322 932

    [83]

    Zhang X, Meng J, Zhu B, Yuan W, Yang H, Zhang Z, Gao Y, Wang Y 2018 Chem. Comm. 54 8587

    [84]

    Zheng H M, Smith R K, Jun Y W, Kisielowski, C, Dahmen U, Alivisatos, A P 2009 Science 324 1309

    [85]

    Liao H G, Cui L K, Whitelam S, Zheng H M 2012 Science 336 1011

    [86]

    Liao H G, Zherebetskyy D, Xin H L, Czarnik C, Ercius P, Elmlund H, Pan M, Wang L W, Zheng H M 2014 Science 345 916

    [87]

    Mirsaidov U, Mokkapati V R S S, Bhattacharya D, Andersen H, Bosman M, Ozyilmaz B, Matsudaira P 2013 Lab Chip 13 2874

    [88]

    Smeets P J M, Cho K R, Kempen R G E, Sommerdijk N A J M, de Yoreo J J 2015 Nat. Mater. 14 394

    [89]

    Chee S W, Pratt S H, Hattar K, Duquette D, Ross F M, Hull R 2015 Chem. Comm. 51 168

    [90]

    Loh N D, Sen S, Bosman M, Tan S F, Zhong J, Nijhuis C A, Král P, Matsudaira P, Mirsaidov U 2017 Nature Chem. 9 77

    [91]

    Pham T A, Govoni M, Seidel R, Bradforth S E, Schwegler E, Galli G 2017 Sci. Adv. 3 e1603210

    [92]

    Zeng Z H, Chang K C, Kubal J, Markovic N M, Greeley J 2017 Nature Energy 2 17070

    [93]

    Luo L L, Su M, Yan P F, Zou L F, Schreiber D K, Baer D R, Zhu Z H, Zhou G W, Wang Y T, Bruemmer S M, Xu Z J, Wang C M 2018 Nature Mater. 17 514

    [94]

    Tuckerman M, Laasonen K, Sprik M, Parrinello M 1995 J. Chem. Phys. 103 150

    [95]

    Marx D, Tuckerman M E, Hutter J, Parrinello M 1999 Nature 397 601

    [96]

    Vittadini A, Selloni A, Rotzinger F P, Gratzel M 1998 Phys. Rev. Lett. 81 2954

    [97]

    Meng S, Xu L F, Wang E G, Gao S W 2002 Phys. Rev. Lett. 89 176104

    [98]

    Wang C L, Lu H J, Wang Z G, Xiu P, Zhou B, Zuo G H, Wang R Z, Hu J Z, Fang H P 2009 Phys. Rev. Lett. 103 137801

    [99]

    Guo P, Tu Y S, Yang J R, Wang C L, Sheng N, Fang H P 2015 Phys. Rev. Lett. 115 186101

    [100]

    Zhu B, Xu Z, Wang C L, Gao Y 2016 Nano Lett. 16 2628.

    [101]

    Duan M, Yu J, Meng J, Zhu B, Wang Y, Gao Y 2018 Angew. Chem. Int. Ed. 57 6464

    [102]

    Lohse D, Zhang X H 2015 Rev. Mod. Phys. 87 981

    [103]

    Smith W, Lam R K, Shih O, Rizzuto A M, Prendergast D, Saykally R J 2015 J. Chem. Phys. 143 084503

  • [1] 李秋红, 马小雪, 潘靖. Al原子的替位掺杂与表面吸附对BiVO4 (010) 晶面光电催化分解水析氧性能的影响. 物理学报, 2023, 72(2): 027101. doi: 10.7498/aps.72.20221842
    [2] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [3] 王丹, 邱荣, 陈博, 包南云, 康冬冬, 戴佳钰. 二维冰相I的电子和光学性质. 物理学报, 2021, 70(13): 133101. doi: 10.7498/aps.70.20210708
    [4] 尤思凡, 孙鲁晔, 郭静, 裘晓辉, 江颖. 表/界面水的扫描探针技术研究进展. 物理学报, 2019, 68(1): 016802. doi: 10.7498/aps.68.20182201
    [5] 林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪. 氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究. 物理学报, 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [6] 詹霞, JoeKelleher, 高建波, 马艳玲, 初铭强, 张书彦, 张鹏, SanjooramPaddea, 贡志锋, 侯晓东. 英国散裂中子源工程材料原位加载衍射实验高温样品环境优化设计. 物理学报, 2019, 68(13): 132901. doi: 10.7498/aps.68.20182295
    [7] 邵梓桥, 毕恒昌, 谢骁, 万能, 孙立涛. 三氧化钨/氧化银复合材料的水热法合成及其光催化降解性能研究. 物理学报, 2018, 67(16): 167802. doi: 10.7498/aps.67.20180663
    [8] 牛书通, 潘鹏, 朱炳辉, 宋涵宇, 金屹磊, 禹楼飞, 韩承志, 邵剑雄, 陈熙萌. 30 keV H+在聚碳酸酯微孔膜中动态输运过程的实验和理论研究. 物理学报, 2018, 67(20): 203401. doi: 10.7498/aps.67.20181062
    [9] 贺瑞霞, 刘伯飞, 梁俊辉, 高海波, 王宁, 张奇星, 张德坤, 魏长春, 许盛之, 王广才, 赵颖, 张晓丹. 类桑拿法制备的周期性结构Mo金属催化电极及其在电解水制氢中的应用. 物理学报, 2016, 65(4): 048801. doi: 10.7498/aps.65.048801
    [10] 方海平. 微观尺度下的水:从准一维、二维受限空间到生物以及材料表面. 物理学报, 2016, 65(18): 186101. doi: 10.7498/aps.65.186101
    [11] 王明, 段芳莉. 界面氢键对受限水结构和动态特性的影响. 物理学报, 2015, 64(21): 218201. doi: 10.7498/aps.64.218201
    [12] 杨庆龄, 陈奕仪, 吴幸, 沈国瑞, 孙立涛. Cu/Al引线键合界面金属间化合物生长过程的原位实验研究. 物理学报, 2015, 64(21): 216804. doi: 10.7498/aps.64.216804
    [13] 薛斌, 王洪阳, 秦猛, 曹毅, 王炜. 基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台. 物理学报, 2015, 64(9): 098702. doi: 10.7498/aps.64.098702
    [14] 崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏. GaAs纳米线及GaAs/InxGa1-xAs/GaAs纳米线径向异质结构的无催化选区生长的实验研究. 物理学报, 2014, 63(13): 136103. doi: 10.7498/aps.63.136103
    [15] 李宗宝, 王霞, 樊帅伟. Cu/N表面沉积共掺杂TiO2光催化剂作用机理的理论研究. 物理学报, 2014, 63(15): 157102. doi: 10.7498/aps.63.157102
    [16] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变. 物理学报, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [17] 尚万里, 朱托, 熊刚, 赵阳, 张文海, 易荣清, 况龙钰, 曹磊峰, 高宇林, 杨家敏, 赵屹东, 崔明启, 郑雷, 韩勇, 周克瑾, 马陈燕. 透射光栅的实验标定和衍射效率的理论模拟. 物理学报, 2011, 60(3): 034216. doi: 10.7498/aps.60.034216
    [18] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [19] 田会娟, 刘迎, 王利军, 张智卜, 肖立峰. 混合漫射近似模型的漫反射理论及其模拟实验研究. 物理学报, 2009, 58(1): 243-249. doi: 10.7498/aps.58.243
    [20] 乔秀梅, 张国平, 张覃鑫. 模拟卢瑟福实验室的实验以检验理论模拟. 物理学报, 2006, 55(3): 1181-1185. doi: 10.7498/aps.55.1181
计量
  • 文章访问数:  8752
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-11
  • 修回日期:  2018-12-29
  • 刊出日期:  2019-01-05

/

返回文章
返回