搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面氢键对受限水结构和动态特性的影响

王明 段芳莉

引用本文:
Citation:

界面氢键对受限水结构和动态特性的影响

王明, 段芳莉

Effect of interfacial hydrogen bonds on the structure and dynamics of confined water

Wang Ming, Duan Fang-Li
PDF
导出引用
  • 应用反应力场分子动力学方法, 模拟了水限制在全羟基化二氧化硅晶体表面间的弛豫过程, 研究了基底表面与水形成的界面氢键, 及其对受限水结构和动态特性行为的影响. 当基底表面硅醇固定时, 靠近基底表面水分子中的氧原子与基底表面的氢原子形成强氢键, 这使得靠近表面水分子中的氧原子比对应的氢原子更靠近基底表面, 从而水分子的偶极矩远离表面. 当基底表面硅醇可动时, 靠近基底表面水分子与基底表面原子形成两种强氢键, 一种是水分子中的氧原子与表面的氢原子形成的强氢键, 数量较少, 另一种是水分子中的氢原子与表面的氧原子形成的强氢键, 数量较多, 这使得靠近表面水分子中的氢原子比对应的氧原子更靠近表面, 从而水分子的偶极矩指向表面. 在相同几何间距下, 当基底表面硅醇可动时, 表面的活动性使得几何限制作用减弱, 导致了受限水分层现象没有固定表面限制下的明显. 此外, 固定表面比可动表面与水形成的界面氢键作用较强, 数量较多, 导致了可动表面限制下水的运动更为剧烈.
    Reactive molecular dynamics (MD) is used to simulate the equilibrium process of water confined between two fully hydroxylated α-quartz (001) surfaces with separation distances from 7 to 20 Å. Effect of different patterns of interfacial hydrogen bonds on the structure and dynamics of confined water is investigated. Density profiles, radial distribution functions, number of interfacial hydrogen bonds, and mean square displacements are calculated. The α-quartz (001) surface is cut from an α-quartz crystal at a certain depth to construct a surface with geminal silanols after being fully hydroxylated. The silanol groups on the surface are treated in two different ways in the MD simulations. One of the silanol groups are treated as to be fixed, and the other one is treated as no constraint for the movement of surface silanols. Our results show that different patterns of hydrogen bonds are formed at the interface between SiO2 surface and water. For the fixed silanol surface there is one type of strong hydrogen bonds interacting between the oxygen atoms of water and the hydrogen atoms of surface silanols, leading to the dipole moment of water molecules pointing out from the surface. For the movable silanol surface there are two types of strong hydrogen bonds formed at the interface. One is between the oxygen atoms of water and the hydrogen atoms of surface silanols, and the other is between the oxygen atoms of surface silanols and the hydrogen atoms of water. The number of hydrogen bonds of the first type is much less than those of the second type, leading to the dipole moment of water molecules pointing to the surface. Moreover, the total number of interfacial hydrogen bonds formed on the fixed silanol surfaces is larger than that on the movable silanol surfaces. The density profiles of the confined water indicate the formation of a strong layering of water in the vicinity of the fixed silanol surface, and the water layer is also more ordered with an ice-like structure, as compared with a dense water layer with a liquid-like structure in the case of movable silanol surfaces. Thus the mean square displacements of confined water show that, as compared with interfacial hydrogen bonds formed on the fixed silanol surfaces, the weaker and the lesser interfacial hydrogen bonds formed on the movable silanol surfaces may be responsible for more intense movement of confined water between the movable silanol surfaces. Our simulation suggests that the different pattern of interfacial hydrogen bonds could signifiantly affect the structure and dynamic behaviors of the confined water between two fully hydroxylated silica surfaces.
      通信作者: 段芳莉, flduan@cqu.edu.cn
    • 基金项目: 中央高校基本科研业务费(批准号: CDJZR12248801)资助的课题.
      Corresponding author: Duan Fang-Li, flduan@cqu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. CDJZR12248801).
    [1]

    He J X, Lu H J, Liu Y, Wu F M, Nie X C, Zhou X Y, Chen Y Y 2012 Chin. Phys. B 21 054703

    [2]

    Stanley H E 2009 Z. Phys. Chem. 223 939

    [3]

    Verdaguer A, Sacha G M, Bluhm H, Salmeron M 2006 Chem. Rev. 106 1478

    [4]

    Alba S C, Coasne B, Dosseh G, Dudziak G, Gubbins K E, Radhakrishnan R, Sliwinska B M 2006 J. Phys-Condens. Mat. 18 R15

    [5]

    Vogler E A 1998 Adv. Colloid Interface Sci. 74 69

    [6]

    Wang Y, Zhao Y J, Huang J P 2012 Chin. Phys. B 21 076102

    [7]

    Papakonstantinou P, Vainos N A, Fotakis C 1999 Appl. Surf. Sci. 151 159

    [8]

    Asay D B, Kim S H 2006 J. Chem. Phys. 124 174712

    [9]

    Zamora R R M, Sanchez C M, Freire F L, Prioli R 2004 Phys. Status Solidi A 201 850

    [10]

    Sirghi L 2003 Appl. Phys. Lett. 82 3755

    [11]

    Qian L M, Tian F, Xiao X D 2003 Tribol. Lett. 15 169

    [12]

    Lee S H, Rossky P J 1994 J. Chem. Phys. 100 3334

    [13]

    Notman R, Walsh T R 2009 Langmuir 25 1638

    [14]

    Bonnaud P A, Coasne B, Pellenq R J M 2010 J. Phys-Condens. Mat. 22 284110

    [15]

    Argyris D, Cole D R, Striolo A 2009 Langmuir 25 8025

    [16]

    Argyris D, Tummala N R, Striolo A, Cole D R 2008 J. Phys. Chem. C 112 13587

    [17]

    Musso F, Mignon P, Ugliengo P, Sodupe M 2012 Phys. Chem. Chem. Phys. 14 10507

    [18]

    Cimas A, Tielens F, Sulpizi M, Gaigeot M P, Costa D 2014 J. Phys-Condens. Mat. 26 244106

    [19]

    Landmesser H, Kosslick H, Storek W, Fricke R 1997 Solid State Ionics 101 271

    [20]

    Puibasset J, Pellenq R J M 2005 J. Chem. Phys. 122 094704

    [21]

    Coasne B, Pellenq R J 2004 J. Chem. Phys. 120 2913

    [22]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graph. Model. 14 33

    [23]

    Fogarty J C, Aktulga H M, Grama A Y, van Duin A C, Pandit S A 2010 J. Chem. Phys. 132 174704

    [24]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [25]

    Soper A K 1994 J. Chem. Phys. 101 6888

    [26]

    Clough S A, Beers Y, Klein G P, Rothman L S 1973 J. Chem. Phys. 59 2254

  • [1]

    He J X, Lu H J, Liu Y, Wu F M, Nie X C, Zhou X Y, Chen Y Y 2012 Chin. Phys. B 21 054703

    [2]

    Stanley H E 2009 Z. Phys. Chem. 223 939

    [3]

    Verdaguer A, Sacha G M, Bluhm H, Salmeron M 2006 Chem. Rev. 106 1478

    [4]

    Alba S C, Coasne B, Dosseh G, Dudziak G, Gubbins K E, Radhakrishnan R, Sliwinska B M 2006 J. Phys-Condens. Mat. 18 R15

    [5]

    Vogler E A 1998 Adv. Colloid Interface Sci. 74 69

    [6]

    Wang Y, Zhao Y J, Huang J P 2012 Chin. Phys. B 21 076102

    [7]

    Papakonstantinou P, Vainos N A, Fotakis C 1999 Appl. Surf. Sci. 151 159

    [8]

    Asay D B, Kim S H 2006 J. Chem. Phys. 124 174712

    [9]

    Zamora R R M, Sanchez C M, Freire F L, Prioli R 2004 Phys. Status Solidi A 201 850

    [10]

    Sirghi L 2003 Appl. Phys. Lett. 82 3755

    [11]

    Qian L M, Tian F, Xiao X D 2003 Tribol. Lett. 15 169

    [12]

    Lee S H, Rossky P J 1994 J. Chem. Phys. 100 3334

    [13]

    Notman R, Walsh T R 2009 Langmuir 25 1638

    [14]

    Bonnaud P A, Coasne B, Pellenq R J M 2010 J. Phys-Condens. Mat. 22 284110

    [15]

    Argyris D, Cole D R, Striolo A 2009 Langmuir 25 8025

    [16]

    Argyris D, Tummala N R, Striolo A, Cole D R 2008 J. Phys. Chem. C 112 13587

    [17]

    Musso F, Mignon P, Ugliengo P, Sodupe M 2012 Phys. Chem. Chem. Phys. 14 10507

    [18]

    Cimas A, Tielens F, Sulpizi M, Gaigeot M P, Costa D 2014 J. Phys-Condens. Mat. 26 244106

    [19]

    Landmesser H, Kosslick H, Storek W, Fricke R 1997 Solid State Ionics 101 271

    [20]

    Puibasset J, Pellenq R J M 2005 J. Chem. Phys. 122 094704

    [21]

    Coasne B, Pellenq R J 2004 J. Chem. Phys. 120 2913

    [22]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graph. Model. 14 33

    [23]

    Fogarty J C, Aktulga H M, Grama A Y, van Duin A C, Pandit S A 2010 J. Chem. Phys. 132 174704

    [24]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [25]

    Soper A K 1994 J. Chem. Phys. 101 6888

    [26]

    Clough S A, Beers Y, Klein G P, Rothman L S 1973 J. Chem. Phys. 59 2254

  • [1] 张洪硕, 周勇壮, 沈咏, 邹宏新. 线型离子阱中钙离子库仑晶体结构和运动轨迹模拟. 物理学报, 2023, 72(1): 013701. doi: 10.7498/aps.72.20221674
    [2] 袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞. GaAs晶体在不同应变下生长过程的分子动力学模拟. 物理学报, 2023, 72(13): 136801. doi: 10.7498/aps.72.20221860
    [3] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟. 物理学报, 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [4] 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究. 物理学报, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [5] 韦昭召, 马骁, 柯常波, 张新平. Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究. 物理学报, 2020, 69(13): 136102. doi: 10.7498/aps.69.20191903
    [6] 王曦, 黎明, 叶方富, 周昕. DNA超分子水凝胶的粗粒化建模与模拟. 物理学报, 2017, 66(15): 150201. doi: 10.7498/aps.66.150201
    [7] 孙川琴, 黄海深, 毕庆玲, 吕勇军. 非晶态合金表面的水润湿动力学. 物理学报, 2017, 66(17): 176101. doi: 10.7498/aps.66.176101
    [8] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [9] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [10] 王琛, 宋海洋, 安敏荣. 界面旋转角对双晶镁力学性质影响的分子动力学模拟. 物理学报, 2014, 63(4): 046201. doi: 10.7498/aps.63.046201
    [11] 张崇龙, 孔伟, 杨芳, 刘松芬, 胡北来. 修正屏蔽库仑势下二维尘埃等离子体的动力学和结构特性. 物理学报, 2013, 62(9): 095201. doi: 10.7498/aps.62.095201
    [12] 张云安, 陶俊勇, 陈循, 刘彬. 水对无定形SiO2拉伸特性影响的反应分子动力学模拟. 物理学报, 2013, 62(24): 246801. doi: 10.7498/aps.62.246801
    [13] 颜笑, 辛子华, 张娇娇. 碳硅二炔结构及性质分子动力学模拟研究. 物理学报, 2013, 62(23): 238101. doi: 10.7498/aps.62.238101
    [14] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [15] 郑小青, 杨洋, 孙得彦. 模型二元有序合金固液界面结构的分子动力学研究. 物理学报, 2013, 62(1): 017101. doi: 10.7498/aps.62.017101
    [16] 司丽娜, 郭丹, 雒建斌. 氧化硅团簇切削单晶硅粗糙峰的分子动力学模拟研究. 物理学报, 2012, 61(16): 168103. doi: 10.7498/aps.61.168103
    [17] 黄秀峰, 潘礼庆, 李晨曦, 王强, 孙刚, 陆坤权. 低温下二氧化硅介孔内水的振动性质. 物理学报, 2012, 61(13): 136801. doi: 10.7498/aps.61.136801
    [18] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究. 物理学报, 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [19] 陈育祥, 谢国锋, 马颖, 周益春. BaTiO3晶体结构及弹性的分子动力学模拟. 物理学报, 2009, 58(6): 4085-4089. doi: 10.7498/aps.58.4085
    [20] 李美丽, 张 迪, 孙宏宁, 付兴烨, 姚秀伟, 李 丛, 段永平, 闫 元, 牟洪臣, 孙民华. 二元Lennard-Jones液体的相分离过程及其扩散性质的分子动力学研究. 物理学报, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
计量
  • 文章访问数:  6112
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-14
  • 修回日期:  2015-07-03
  • 刊出日期:  2015-11-05

/

返回文章
返回