搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红光量子点掺杂PVK体系的发光特性研究

刘志民 赵谡玲 徐征 高松 杨一帆

引用本文:
Citation:

红光量子点掺杂PVK体系的发光特性研究

刘志民, 赵谡玲, 徐征, 高松, 杨一帆

Luminescence characteristics of PVK doped with red-emitting quantum dots

Liu Zhi-Min, Zhao Su-Ling, Xu Zheng, Gao Song, Yang Yi-Fan
PDF
导出引用
  • 无热处理制备了红光CdSe/ZnS量子点掺杂PVK的ITO/PVK:QDs/Alq3/Al结构电致发光器件. 测试器件的发光光谱和电学特性等,研究了掺杂浓度(质量分数)对体系发光特性的影响,将非掺杂与掺杂体系做了比较,提出了优化掺杂体系的一些可行方案. 量子点掺杂浓度较低时,主要为Alq3的发光;掺杂浓度为20%时,Alq3的发光得到抑制,红光发射最佳;继续增大掺杂浓度,QDs发光峰发生微弱红移,器件性能变差. 与非掺杂体系相比,掺杂浓度合适的PVK:QDs体系大大提高了器件的稳定性.
    Multilayer electroluminescent devices with a system in which red-emitting quantum dots doped PVK serves as the active layer is fabricated through non-treatment process, the device structure being ITO/PVK:QDs/Alq3/Al. Measuring the emission spectra and electrical characteristics of the devices we study the effect of different QDs doping concentration (mass fraction), and propose some possible solutions to optimize the PVK:QDs system after taking pure QDs for comparison. Experimental results show that changing QDs doping concentration would bring significant impact on the electroluminescence (EL) spectra, current density, brightness, and the stability of devices. When QDs doping concentration is low, we will mainly see the light of Alq3; when QDs doping concentration is 20%, saturated pure red light emission is observed and it is brighter than other devices. However, when the doping concentration is high, a slight red shift occurs in the EL spectra, and the performance of the device gets worse. With a suitable doping concentration, the PVK:QDs may increase the stability of devices.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号:2010CB327704)、国家自然科学基金(批准号:51272022)、国家高技术研究发展计划(863计划)(批准号:2013AA032205)、教育部新世纪优秀人才支持计划(批准号:NCET-10-0220)、高等学校博士学科点专项科研基金(批准号:20120009130005,20130009130001)和中央高校基本科研业务费专项资金(批准号:2012JBZ001)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2010CB327704), the National Natural Science Foundation of China (Grant No. 51272022), the National High Technology Research and Development Program of China (Grant No. 2013AA032205), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-10-0220), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20120009130005, 20130009130001), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2012JBZ001).
    [1]

    Colvin V L, Schlamp M C, Alivisatos A 1994 Nature 370 354

    [2]

    Steckel J S, Snee P, Coe-Sullivan S, Zimmer J P, Halpert J E, Anikeeva P, Kim L A, Bulovi V, Bawendi M G 2006 Angew. Chem. Int. Ed. 45 5796

    [3]

    Steckel J S, Zimmer J P, Coe-Sullivan S, Stott N E, Bulovi V, Bawendi M G 2004 Angew. Chem. Int. Ed. 43 2154

    [4]

    O’Connor E, O’Riordan A, Doyle H, Moynihan S, Cuddihy A, Redmond G 2005 Appl. Phys. Lett. 86 201114

    [5]

    Steckel J S, Coe-Sullivan S, Bulovi V, Bawendi M G 2003 Adv. Mater. 15 1862

    [6]

    Bakueva L, Musikhin S, Hines M A, Chang T-WF, Tzolov M, Scholes G D, Sargent E H 2003 Appl. Phys. Lett. 82 2895

    [7]

    Murray C B, Kagan C R, Bawendi M G 1995 Science 270 1335

    [8]

    Lin X M, Jaeger H M, Sorensen C M, Klabunde K J 2001 J. Phys. Chem. B 105 3353

    [9]

    Santhanam V, Andres R P 2004 Nano Lett. 4 41

    [10]

    Dabbousi B O, Murray C B, Rubner M F, Bawendi M G 1994 Chem. Mater. 6 216

    [11]

    Collier C P, Saykally R J, Shiang J J, Henrichs S E, Heath J R 1997 Science 277 1978

    [12]

    Kong Y C, Zhou D Y, Lan Q, Liu J L, Miao Z H, Feng S L, Niu Z C 2003 Chin. Phys. 12 97

    [13]

    Sun Q J, Wang Y A, Li L S, Wang D Y, Zhu T, Xu J, Yang C H, Li Y F 2007 Nat. Photonics 1 717

    [14]

    Gordan K C, Walsh P J, McGale E M 2004 Curr. Appl. Phys. 4 331

    [15]

    Anikeeva P O, Halpert J E, Bawendi M G, Bulovi V 2009 Nano Lett. 9 2532

    [16]

    Wu C C, Wu C I, Sturm J C, Kahn A 1997 Appl. Phys. Lett. 70 1348

    [17]

    Chen W B, Xu Z X, Li K, Chui S Y, Roy V A L, Lai P T, Che C M 2012 Chin. Phys. B 21 78401

    [18]

    Coe-Sullivan S, Steckel J S, Woo W K, Bawendi M G, Bulovi V 2005 Adv. Funct. Mater. 15 1117

    [19]

    Chen B J, Liu S Y 1997 Synth. Met. 91 169

    [20]

    Zhu H N, Xu Z, Zhao S L, Zhang F J, Kong C, Yan G, Gong W 2010 Acta Phys. Sin. 59 8093 (in Chinese)[朱海娜, 徐征, 赵谡玲, 张福俊, 孔超, 闫光, 龚伟 2010 物理学报 59 8093]

    [21]

    Dong W F, Yang Q Q, Li J, Wang Q M, Cui Q, Zhou J M, Huang Q 1996 Chin. Phys. 5 456

    [22]

    Dabbousi B O, Bawendi M G, Onitsuka O, Rubner M F 1995 Appl. Phys. Lett. 66 1316

    [23]

    Nie H, Zhang B, Tang X Z 2007 Chin. Phys. 16 730

  • [1]

    Colvin V L, Schlamp M C, Alivisatos A 1994 Nature 370 354

    [2]

    Steckel J S, Snee P, Coe-Sullivan S, Zimmer J P, Halpert J E, Anikeeva P, Kim L A, Bulovi V, Bawendi M G 2006 Angew. Chem. Int. Ed. 45 5796

    [3]

    Steckel J S, Zimmer J P, Coe-Sullivan S, Stott N E, Bulovi V, Bawendi M G 2004 Angew. Chem. Int. Ed. 43 2154

    [4]

    O’Connor E, O’Riordan A, Doyle H, Moynihan S, Cuddihy A, Redmond G 2005 Appl. Phys. Lett. 86 201114

    [5]

    Steckel J S, Coe-Sullivan S, Bulovi V, Bawendi M G 2003 Adv. Mater. 15 1862

    [6]

    Bakueva L, Musikhin S, Hines M A, Chang T-WF, Tzolov M, Scholes G D, Sargent E H 2003 Appl. Phys. Lett. 82 2895

    [7]

    Murray C B, Kagan C R, Bawendi M G 1995 Science 270 1335

    [8]

    Lin X M, Jaeger H M, Sorensen C M, Klabunde K J 2001 J. Phys. Chem. B 105 3353

    [9]

    Santhanam V, Andres R P 2004 Nano Lett. 4 41

    [10]

    Dabbousi B O, Murray C B, Rubner M F, Bawendi M G 1994 Chem. Mater. 6 216

    [11]

    Collier C P, Saykally R J, Shiang J J, Henrichs S E, Heath J R 1997 Science 277 1978

    [12]

    Kong Y C, Zhou D Y, Lan Q, Liu J L, Miao Z H, Feng S L, Niu Z C 2003 Chin. Phys. 12 97

    [13]

    Sun Q J, Wang Y A, Li L S, Wang D Y, Zhu T, Xu J, Yang C H, Li Y F 2007 Nat. Photonics 1 717

    [14]

    Gordan K C, Walsh P J, McGale E M 2004 Curr. Appl. Phys. 4 331

    [15]

    Anikeeva P O, Halpert J E, Bawendi M G, Bulovi V 2009 Nano Lett. 9 2532

    [16]

    Wu C C, Wu C I, Sturm J C, Kahn A 1997 Appl. Phys. Lett. 70 1348

    [17]

    Chen W B, Xu Z X, Li K, Chui S Y, Roy V A L, Lai P T, Che C M 2012 Chin. Phys. B 21 78401

    [18]

    Coe-Sullivan S, Steckel J S, Woo W K, Bawendi M G, Bulovi V 2005 Adv. Funct. Mater. 15 1117

    [19]

    Chen B J, Liu S Y 1997 Synth. Met. 91 169

    [20]

    Zhu H N, Xu Z, Zhao S L, Zhang F J, Kong C, Yan G, Gong W 2010 Acta Phys. Sin. 59 8093 (in Chinese)[朱海娜, 徐征, 赵谡玲, 张福俊, 孔超, 闫光, 龚伟 2010 物理学报 59 8093]

    [21]

    Dong W F, Yang Q Q, Li J, Wang Q M, Cui Q, Zhou J M, Huang Q 1996 Chin. Phys. 5 456

    [22]

    Dabbousi B O, Bawendi M G, Onitsuka O, Rubner M F 1995 Appl. Phys. Lett. 66 1316

    [23]

    Nie H, Zhang B, Tang X Z 2007 Chin. Phys. 16 730

  • [1] 李元和, 卓志瑶, 王健, 黄君辉, 李叔伦, 倪海桥, 牛智川, 窦秀明, 孙宝权. 金纳米颗粒调控量子点激子自发辐射速率. 物理学报, 2022, 71(6): 067804. doi: 10.7498/aps.71.20211863
    [2] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机. 物理学报, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [3] 周亮亮, 吴宏博, 李学铭, 唐利斌, 郭伟, 梁晶. ZrS2量子点: 制备、结构及光学特性. 物理学报, 2019, 68(14): 148501. doi: 10.7498/aps.68.20190680
    [4]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质. 物理学报, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [5] 孙立志, 赵谡玲, 徐征, 尹慧丽, 张成文, 龙志娟, 洪晓霞, 王鹏, 徐叙瑢. 基于量子点和MEH-PPV的白光发光二极管的研究. 物理学报, 2016, 65(6): 067301. doi: 10.7498/aps.65.067301
    [6] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究. 物理学报, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [7] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响. 物理学报, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [8] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [9] 杨双波. 掺杂浓度及掺杂层厚度对Si均匀掺杂的GaAs量子阱中电子态结构的影响. 物理学报, 2013, 62(15): 157301. doi: 10.7498/aps.62.157301
    [10] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳. 碳纳米管掺杂对聚合物聚(2-甲氧基-5-辛氧基)对苯乙炔-PbSe量子点复合材料性能的影响. 物理学报, 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [11] 琚鑫, 郭健宏. 点间耦合强度对三耦合量子点系统微分电导的影响. 物理学报, 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [12] 冯昊, 俞重远, 刘玉敏, 芦鹏飞, 贾博雍, 姚文杰, 田宏达, 赵伟, 徐子欢. 应变补偿层对量子点生长影响的理论研究. 物理学报, 2010, 59(2): 765-770. doi: 10.7498/aps.59.765
    [13] 尹辑文, 肖景林, 于毅夫, 王子武. 库仑势对抛物量子点量子比特消相干的影响. 物理学报, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [14] 蔡承宇, 周旺民. Ge/Si半导体量子点的应变分布与平衡形态. 物理学报, 2007, 56(8): 4841-4846. doi: 10.7498/aps.56.4841
    [15] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [16] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布. 物理学报, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [17] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器. 物理学报, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [18] 刘世荣, 黄伟其, 秦朝建. 氧化硅层中的锗纳米晶体团簇量子点. 物理学报, 2006, 55(5): 2488-2491. doi: 10.7498/aps.55.2488
    [19] 邓宇翔, 颜晓红, 唐娜斯. 量子点环的电子输运研究. 物理学报, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [20] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构. 物理学报, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
计量
  • 文章访问数:  7134
  • PDF下载量:  1222
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-20
  • 修回日期:  2014-01-20
  • 刊出日期:  2014-05-05

/

返回文章
返回