-
本研究提出了一种在腔光磁机械混合系统中实现可调谐的磁振子与光子双稳态的理论框架。系统是由微波腔、磁振子、机械振子和光学腔组成。其中,磁振子模通过磁偶极相互作用与微波腔模耦合,同时经磁致伸缩效应与声子模相互作用;声子模则通过辐射压力以光机械耦合方式与光学腔模作用。通过数值求解量子朗之万方程,分析了耦合强度、失谐参数及耗散率对双稳态阈值与迟滞特性的影响。并进一步研究了不同系统参数下稳态间量子态跃迁的动力学行为。结果显示,该双稳态特性可通过系统参数进行精确调控,其阈值及迟滞宽度对耦合效率与耗散机制呈现非线性关系。该研究为可调谐光学开关及量子信息处理器件的设计提供了理论依据。This study establishes a theoretical framework for realizing and dynamically controlling magnon and optical bistability in a hybrid cavity optomagnomechanical system composed of microwave cavity mode, magnon mode, phonon mode, and optical cavity mode. The objective is to investigate the synergistic interplay among self-Kerr nonlinearity, magnetostrictive effect, and radiation pressure induced optomechanical coupling in generating and modulating bistable behavior. Furthermore, this work aims to reveal the transient quantum state transition dynamics between bistable states. The system Hamiltonian incorporates magnetic dipole interaction between the magnon mode and microwave cavity mode, magnomechanical interaction between the magnon mode and phonon mode, and optomechanical interaction between the phonon mode and optical cavity mode. In addition, the self-Kerr nonlinearity of the magnon mode is considered. Numerical analysis of the system dynamics is conducted using quantum Langevin equations that include dissipation and input noise terms. Steady-state analytical solutions for the average magnon number and optical photon number are derived, revealing a bistable characteristic with three possible solutions. Numerical simulations are performed using experimentally feasible parameters, including coupling strengths, frequency detunings, and dissipation rates. Results indicate that both magnon and optical bistabilities are tunable. Specifically, adjusting the microwave cavity–magnon coupling efficiency enables modulation of the energy transfer efficiency from microwave to magnon, thereby altering the hysteresis window and excitation threshold of the magnon bistability. Tuning the magnon-phonon interaction can influence the energy transfer from magnon to phonon. A larger magnon-pump detuning enhances nonlinear frequency shifts, alters energy transfer pathways, broadens the hysteresis loop, and increases the magnon population on the upper branch of the bistable curve. Higher magnon dissipation rate hinder the accumulation of nonlinear effect, narrowing the bistability window and shifting the threshold to higher pump powers. For optical bistability, stronger optomechanical interaction reduce the effective cavity loss and weaken the nonlinear response to the pump field, leading to a decrease in the amplitude of bistability and a narrowing of the hysteresis loop. Increasing the optical cavity–pump detuning suppresses energy transfer efficiency, necessitating higher pump power to achieve the same photon number, thereby enhancing the prominence of the bistability. Elevating the optical cavity dissipation rate requires stronger driving to compensate for photon losses, resulting in a narrower hysteresis loop and a rightward shift of the threshold. Sharp vertical jumps observed in the bistability curves correspond to instantaneous transitions at critical driving points, enabling switch-like behavior. Moreover, transient dynamics obtained by numerically solving the Langevin equations reveal time evolution of magnon and photon numbers under nonequilibrium initial conditions. Within the bistability regime, the system exhibits quantum state transitions between low and high steady states. Transition rates are determined collectively by system parameters. Therefore, this study provides a theoretical platform for multi-parameter cooperative control of magnon and optical bistability. The tunability mechanisms are governed by the joint action of coupling strength, detuning, and dissipation rate. The controllability of bistability thresholds, hysteresis widths, and transient quantum state transition dynamics demonstrated in this work highlights the significant potential for applications such as tunable optical switches, quantum information processing devices, and fundamental studies of nonlinear quantum dynamics in hybrid system.
-
[1] Abraham E, Smith S D 1982Rep. Prog. Phys. 45 815
[2] Gibbs H M, McCall S L, Venkatesan T N C 1976Phys. Rev. Lett. 36 1135
[3] Chen Y Y, Li Y N, Wan R G 2018J. Opt. Soc. Am. B 35 1240
[4] Kubytskyi V, Biehs S A, Ben-Abdallah P 2014Phys. Rev. Lett. 113074301
[5] Anton M A, Calderón O G, Melle S, Gonzalo I, Carreno F 2006Opt. Commun. 268 146
[6] Chen S W, Zeng Y X, Li Z F, Mao Y, Dai X Y, Xiang Y J 2023Nanophotonics 12 3613
[7] Sete E A, Eleuch H 2012Phys. Rev. A 85 043824
[8] Wang Z P, Zhen S L, Yu B L 2015 Laser Phys. Lett. 12 046004
[9] Yan D, Wang Z H, Ren C N, Gao H, Li Y, Wu J H 2015Phys. Rev. A 91 023813
[10] Wang Y P, Zhang G Q, Zhang D, Li T F, Hu C M, You J Q 2018Phys. Rev. Lett. 120 057202
[11] Yang Z B, Jin H, Jin J W, Liu J Y, Liu H Y, Yang R C 2021Phys. Rev. Research 3 023126
[12] Wang Y P, Zhang G Q, Zhang D, Luo X Q, Xiong W, Wang S P, Li T F, Hu C M, You J Q 2016Phys. Rev. B 94 224410
[13] Chen Z C, Kong D Y, Wang F 2024Results Phys. 61 107762
[14] Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys. Rev. Lett. 129123601
[15] Wang Q, Verba R, Davídková K, Heinz B, Tian S X, Rao Y H, Guo M Y, Guo X Y, Dubs C, Pirro P, Chumak A V 2024Nat. Commun. 15 7577
[16] Shen R C, Wang Y P, Li J, Zhu S Y, Agarwal G S, You J Q 2021Phys. Rev. Lett. 127 183202
[17] Kuo D M T, Chang Y C 2009Jpn. J. Appl. Phys. 48 104504
[18] Zhang G Q, Wang Y P, You J Q 2019Sci. China Phys. Mech. Astron. 62 1
[19] Li J, Zhu S Y, Agarwal G S 2018Phys. Rev. Lett. 121203601
[20] Soykal Ö O, Flatté M E 2010Phys. Rev. Lett. 104077202
[21] Zhang X, Zou C L, Jiang L, Tang H X 2016Sci. Adv. 2 e1501286
[22] Fan Z Y, Qian H, Zuo X, Li J 2023Phys. Rev. A 108 023501
[23] Martinis J M, Nam S, Aumentado J, Urbina C 2002Phys. Rev. Lett. 89117901
[24] Fan Z Y, Shen R C, Wang Y P, Li J, You J Q 2022 Phys. Rev. A 105 033507
[25] Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013Phys. Rev. Lett. 111 127003
[26] Zuo X, Fan Z Y, Qian H, Ding M S, Tan H, Xiong H, Li J 2024New J. Phys. 26031201
[27] Fan Z Y, Qian H, Li J 2022Quantum Sci. Technol. 8 015014
[28] Fan Z Y, Qiu L, Gröblacher S, Li J 2023Laser Photonics Rev. 17 2200866
[29] Engelhardt F, Bittencourt V A, Huebl H, Klein O, Kusminskiy S V 2022Phys. Rev. Appl. 18 044059
[30] Di K, Tan S, Wang L Y, Cheng A Y, Wang X, Liu Y, Du J J 2023Opt. Express 3129491
[31] Di K, Wang X, Xia H R, Zhao Y X, Liu Y, Cheng A Y, Du J J 2024Opt. Lett. 492878
[32] Yu M, Zhu S Y, Li J 2020 J. Phys. B: At. Mol. Opt. Phys. 53 065402
[33] Chen J, Fan X G, Xiong W, Wang D, Ye L 2024Phys. Rev. A 109 043512
[34] Bi M X, Yan X H, Xiao Y, Dai C J 2020J. Appl. Phys. 127084501
[35] Rameshti B Z, Kusminskiy S V, Haigh J A, Usami K, Lachance-Quirion D, Nakamura Y, Hu C M, Tang H X, Bauer G E W, Blanter Y M 2022Phys. Rep. 979 1
[36] Wu Q, Hu Y H, Ma P C 2017 Int. J. Theor. Phys. 561635
[37] Barbhuiya S A, Bhattacherjee A B 2022J. Appl. Phys. 132184401
[38] Yeasmin, S, Yadav S, Bhattacherjee A B, Banerjee S 2021J. Mod. Opt. 68975
[39] Kumar - Singh M, Mahajan S, Bhatt V, Yadav S, Jha P K, Bhattacherjee A B 2024 J. Appl. Phys. 136
[40] Zhang G Q, Chen Z, Xiong W, Lam C H, You J Q 2021 Phys. Rev. B 104 064423
[41] Wu W J, Xu D, Qian J, Li J, Wang Y P, You J Q 2022Chin. Phys. B 31 127503
[42] Zhang G J, Wang Y P 2020Acta Phys. Sin. 694
[43] Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009Nature 460724
[44] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 3301520
计量
- 文章访问数: 19
- PDF下载量: 2
- 被引次数: 0