搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

腔光磁机械系统中可调谐的磁振子与光学双稳态研究

马会芳 闫映策 周智利 夏华容 高峰

引用本文:
Citation:

腔光磁机械系统中可调谐的磁振子与光学双稳态研究

马会芳, 闫映策, 周智利, 夏华容, 高峰

Study of tunable magnon and optical bistability in a cavity optomagnomechanical system

MA Huifang, YAN Yingce, ZHOU Zhili, XIA Huarong, GAO Feng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本研究提出了一种在腔光磁机械混合系统中实现可调谐的磁振子与光子双稳态的理论框架。系统是由微波腔、磁振子、机械振子和光学腔组成。其中,磁振子模通过磁偶极相互作用与微波腔模耦合,同时经磁致伸缩效应与声子模相互作用;声子模则通过辐射压力以光机械耦合方式与光学腔模作用。通过数值求解量子朗之万方程,分析了耦合强度、失谐参数及耗散率对双稳态阈值与迟滞特性的影响。并进一步研究了不同系统参数下稳态间量子态跃迁的动力学行为。结果显示,该双稳态特性可通过系统参数进行精确调控,其阈值及迟滞宽度对耦合效率与耗散机制呈现非线性关系。该研究为可调谐光学开关及量子信息处理器件的设计提供了理论依据。
    This study establishes a theoretical framework for realizing and dynamically controlling magnon and optical bistability in a hybrid cavity optomagnomechanical system composed of microwave cavity mode, magnon mode, phonon mode, and optical cavity mode. The objective is to investigate the synergistic interplay among self-Kerr nonlinearity, magnetostrictive effect, and radiation pressure induced optomechanical coupling in generating and modulating bistable behavior. Furthermore, this work aims to reveal the transient quantum state transition dynamics between bistable states. The system Hamiltonian incorporates magnetic dipole interaction between the magnon mode and microwave cavity mode, magnomechanical interaction between the magnon mode and phonon mode, and optomechanical interaction between the phonon mode and optical cavity mode. In addition, the self-Kerr nonlinearity of the magnon mode is considered. Numerical analysis of the system dynamics is conducted using quantum Langevin equations that include dissipation and input noise terms. Steady-state analytical solutions for the average magnon number and optical photon number are derived, revealing a bistable characteristic with three possible solutions. Numerical simulations are performed using experimentally feasible parameters, including coupling strengths, frequency detunings, and dissipation rates. Results indicate that both magnon and optical bistabilities are tunable. Specifically, adjusting the microwave cavity–magnon coupling efficiency enables modulation of the energy transfer efficiency from microwave to magnon, thereby altering the hysteresis window and excitation threshold of the magnon bistability. Tuning the magnon-phonon interaction can influence the energy transfer from magnon to phonon. A larger magnon-pump detuning enhances nonlinear frequency shifts, alters energy transfer pathways, broadens the hysteresis loop, and increases the magnon population on the upper branch of the bistable curve. Higher magnon dissipation rate hinder the accumulation of nonlinear effect, narrowing the bistability window and shifting the threshold to higher pump powers. For optical bistability, stronger optomechanical interaction reduce the effective cavity loss and weaken the nonlinear response to the pump field, leading to a decrease in the amplitude of bistability and a narrowing of the hysteresis loop. Increasing the optical cavity–pump detuning suppresses energy transfer efficiency, necessitating higher pump power to achieve the same photon number, thereby enhancing the prominence of the bistability. Elevating the optical cavity dissipation rate requires stronger driving to compensate for photon losses, resulting in a narrower hysteresis loop and a rightward shift of the threshold. Sharp vertical jumps observed in the bistability curves correspond to instantaneous transitions at critical driving points, enabling switch-like behavior. Moreover, transient dynamics obtained by numerically solving the Langevin equations reveal time evolution of magnon and photon numbers under nonequilibrium initial conditions. Within the bistability regime, the system exhibits quantum state transitions between low and high steady states. Transition rates are determined collectively by system parameters. Therefore, this study provides a theoretical platform for multi-parameter cooperative control of magnon and optical bistability. The tunability mechanisms are governed by the joint action of coupling strength, detuning, and dissipation rate. The controllability of bistability thresholds, hysteresis widths, and transient quantum state transition dynamics demonstrated in this work highlights the significant potential for applications such as tunable optical switches, quantum information processing devices, and fundamental studies of nonlinear quantum dynamics in hybrid system.
  • [1]

    Abraham E, Smith S D 1982Rep. Prog. Phys. 45 815

    [2]

    Gibbs H M, McCall S L, Venkatesan T N C 1976Phys. Rev. Lett. 36 1135

    [3]

    Chen Y Y, Li Y N, Wan R G 2018J. Opt. Soc. Am. B 35 1240

    [4]

    Kubytskyi V, Biehs S A, Ben-Abdallah P 2014Phys. Rev. Lett. 113074301

    [5]

    Anton M A, Calderón O G, Melle S, Gonzalo I, Carreno F 2006Opt. Commun. 268 146

    [6]

    Chen S W, Zeng Y X, Li Z F, Mao Y, Dai X Y, Xiang Y J 2023Nanophotonics 12 3613

    [7]

    Sete E A, Eleuch H 2012Phys. Rev. A 85 043824

    [8]

    Wang Z P, Zhen S L, Yu B L 2015 Laser Phys. Lett. 12 046004

    [9]

    Yan D, Wang Z H, Ren C N, Gao H, Li Y, Wu J H 2015Phys. Rev. A 91 023813

    [10]

    Wang Y P, Zhang G Q, Zhang D, Li T F, Hu C M, You J Q 2018Phys. Rev. Lett. 120 057202

    [11]

    Yang Z B, Jin H, Jin J W, Liu J Y, Liu H Y, Yang R C 2021Phys. Rev. Research 3 023126

    [12]

    Wang Y P, Zhang G Q, Zhang D, Luo X Q, Xiong W, Wang S P, Li T F, Hu C M, You J Q 2016Phys. Rev. B 94 224410

    [13]

    Chen Z C, Kong D Y, Wang F 2024Results Phys. 61 107762

    [14]

    Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys. Rev. Lett. 129123601

    [15]

    Wang Q, Verba R, Davídková K, Heinz B, Tian S X, Rao Y H, Guo M Y, Guo X Y, Dubs C, Pirro P, Chumak A V 2024Nat. Commun. 15 7577

    [16]

    Shen R C, Wang Y P, Li J, Zhu S Y, Agarwal G S, You J Q 2021Phys. Rev. Lett. 127 183202

    [17]

    Kuo D M T, Chang Y C 2009Jpn. J. Appl. Phys. 48 104504

    [18]

    Zhang G Q, Wang Y P, You J Q 2019Sci. China Phys. Mech. Astron. 62 1

    [19]

    Li J, Zhu S Y, Agarwal G S 2018Phys. Rev. Lett. 121203601

    [20]

    Soykal Ö O, Flatté M E 2010Phys. Rev. Lett. 104077202

    [21]

    Zhang X, Zou C L, Jiang L, Tang H X 2016Sci. Adv. 2 e1501286

    [22]

    Fan Z Y, Qian H, Zuo X, Li J 2023Phys. Rev. A 108 023501

    [23]

    Martinis J M, Nam S, Aumentado J, Urbina C 2002Phys. Rev. Lett. 89117901

    [24]

    Fan Z Y, Shen R C, Wang Y P, Li J, You J Q 2022 Phys. Rev. A 105 033507

    [25]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013Phys. Rev. Lett. 111 127003

    [26]

    Zuo X, Fan Z Y, Qian H, Ding M S, Tan H, Xiong H, Li J 2024New J. Phys. 26031201

    [27]

    Fan Z Y, Qian H, Li J 2022Quantum Sci. Technol. 8 015014

    [28]

    Fan Z Y, Qiu L, Gröblacher S, Li J 2023Laser Photonics Rev. 17 2200866

    [29]

    Engelhardt F, Bittencourt V A, Huebl H, Klein O, Kusminskiy S V 2022Phys. Rev. Appl. 18 044059

    [30]

    Di K, Tan S, Wang L Y, Cheng A Y, Wang X, Liu Y, Du J J 2023Opt. Express 3129491

    [31]

    Di K, Wang X, Xia H R, Zhao Y X, Liu Y, Cheng A Y, Du J J 2024Opt. Lett. 492878

    [32]

    Yu M, Zhu S Y, Li J 2020 J. Phys. B: At. Mol. Opt. Phys. 53 065402

    [33]

    Chen J, Fan X G, Xiong W, Wang D, Ye L 2024Phys. Rev. A 109 043512

    [34]

    Bi M X, Yan X H, Xiao Y, Dai C J 2020J. Appl. Phys. 127084501

    [35]

    Rameshti B Z, Kusminskiy S V, Haigh J A, Usami K, Lachance-Quirion D, Nakamura Y, Hu C M, Tang H X, Bauer G E W, Blanter Y M 2022Phys. Rep. 979 1

    [36]

    Wu Q, Hu Y H, Ma P C 2017 Int. J. Theor. Phys. 561635

    [37]

    Barbhuiya S A, Bhattacherjee A B 2022J. Appl. Phys. 132184401

    [38]

    Yeasmin, S, Yadav S, Bhattacherjee A B, Banerjee S 2021J. Mod. Opt. 68975

    [39]

    Kumar - Singh M, Mahajan S, Bhatt V, Yadav S, Jha P K, Bhattacherjee A B 2024 J. Appl. Phys. 136

    [40]

    Zhang G Q, Chen Z, Xiong W, Lam C H, You J Q 2021 Phys. Rev. B 104 064423

    [41]

    Wu W J, Xu D, Qian J, Li J, Wang Y P, You J Q 2022Chin. Phys. B 31 127503

    [42]

    Zhang G J, Wang Y P 2020Acta Phys. Sin. 694

    [43]

    Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009Nature 460724

    [44]

    Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 3301520

  • [1] 佘彦超, 徐名琪, 冯雯雅, 刘嘉琦, 杨红. 量子点-双腔磁光机械系统中的磁振子双稳态. 物理学报, doi: 10.7498/aps.74.20250172
    [2] 胡生润, 季学强, 王进进, 阎结昀, 张天悦, 李培刚. 基于Ga2O3-SiC-Ag多层结构的介电常数近零超低开关阈值光学双稳态器件. 物理学报, doi: 10.7498/aps.73.20231534
    [3] 李昀衡, 喻可, 朱天宇, 于桐, 单思超, 谷亚舟, 李志曈. 拓扑层结构中的光学双稳态及其在光神经网络中的应用. 物理学报, doi: 10.7498/aps.73.20240569
    [4] 陈华俊. 基于石墨烯光力系统的非线性光学效应及非线性光学质量传感. 物理学报, doi: 10.7498/aps.69.20191745
    [5] 董丽娟, 薛春华, 孙勇, 邓富胜, 石云龙. 单负材料异质结构中损耗诱导的场局域增强和光学双稳态. 物理学报, doi: 10.7498/aps.65.114207
    [6] 王立明, 吴峰. 耦合分数阶双稳态振子的同步、反同步与振幅死亡. 物理学报, doi: 10.7498/aps.62.210504
    [7] 张强, 周胜, 励强华, 王选章, 付淑芳. 一维反铁磁光子晶体光学双稳态效应研究. 物理学报, doi: 10.7498/aps.61.157501
    [8] 杨金金, 李慧军, 文文, 黄国翔. n型主动拉曼增益原子介质中的光学双稳态. 物理学报, doi: 10.7498/aps.61.224204
    [9] 刘均海, 万勇, 韩文娟, 杨红卫, 张怀金, 王继扬, Petrov Valentin. 掺Yb钒酸盐晶体激光振荡中的光学双稳态现象研究. 物理学报, doi: 10.7498/aps.59.293
    [10] 陈爱喜, 陈德海, 王志平. 级联型四能级原子相干介质中的光学双稳态和多稳态. 物理学报, doi: 10.7498/aps.58.5450
    [11] 牛永迪, 马文强, 王荣. 电光双稳态系统的混沌控制与同步. 物理学报, doi: 10.7498/aps.58.2934
    [12] 毛庆和, 冯素娟, 蒋 建, 朱宗玖, 刘文清. 基于FLM的L波段双波长EDFL的双稳态变换. 物理学报, doi: 10.7498/aps.56.296
    [13] 陈 峻, 刘正东, 尤素萍. 准Λ型四能级原子系统中的烧孔和光学双稳现象. 物理学报, doi: 10.7498/aps.55.6410
    [14] 王惠, 蓝文广, 林位株, 莫党. 基于高聚物光诱导激子漂白的无腔光学双稳态. 物理学报, doi: 10.7498/aps.46.1493
    [15] 杨援, 戴建华, 张洪钧. 光学双稳态离散模型的动力学行为. 物理学报, doi: 10.7498/aps.43.699
    [16] 汪映海, 胡成生, 汪志诚. 吸收型双光子光学双稳态的时间行为. 物理学报, doi: 10.7498/aps.41.1598
    [17] 王鹏业, 张洪钧, 戴建华. 光学双稳态和混沌运动中的临界现象. 物理学报, doi: 10.7498/aps.34.1233
    [18] 戴建华, 张洪钧, 王鹏业, 金朝鼎. 液晶混合光学双稳态的分叉图. 物理学报, doi: 10.7498/aps.34.992
    [19] 程瑞华, 栾绍金, 沈红卫, 谭维翰. InSb的光学双稳态. 物理学报, doi: 10.7498/aps.34.1212
    [20] 朱诗尧. 双光子光学双稳态的研究. 物理学报, doi: 10.7498/aps.33.16
计量
  • 文章访问数:  19
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-16

/

返回文章
返回