搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维反铁磁光子晶体光学双稳态效应研究

张强 周胜 励强华 王选章 付淑芳

引用本文:
Citation:

一维反铁磁光子晶体光学双稳态效应研究

张强, 周胜, 励强华, 王选章, 付淑芳

Optical Bi-stability in one-dimensional antiferromagnetic photonic crystal

Zhang Qiang, Zhou Sheng, Li Qiang-Hua, Wang Xuan-Zhang, Fu Shu-Fang
PDF
导出引用
  • 基于传递矩阵方法和光局域化原理, 本文研究了一维反铁磁光子晶体共振频率附近光学双稳态效应随电磁波入射角、 外磁场强度及电介质层数的变化.研究发现, 当外磁场为1.0 kG(1 G=10-4 T)、电磁波小角度入射时, 反铁磁材料高低共振频率附近均可探测到光学双稳态效应; 当电磁波大角度入射时, 仅在高共振频率附近探测到光学双稳态效应. 然而, 当外磁场强度增加到2.0 kG时, 由于反铁磁材料的高低共振频率向两侧移动, 低共振频率附近缺失的光学双稳态频率窗口又被有效激发. 此外, 电磁波小角度入射时, 电介质层数在低共振频率附近对双稳态效应影响较明显.
    Based on the transfer matrix method and the principle of light localization, the optical bi stability (OB) changing with magnetic field strength, incident angle and dielectric layer are investigated in an one-dimensional antiferromagnetic photonic crystal near the resonant frequencies. We find that the OBs can be observed near the two resonant frequencies at a smaller incident angle, but they disappear near the higher resonant frequencies at a bigger incident angle when the magnetic field strength is 1.0 kG. However, once the external magnetic field strength increases up to 2.0 kG, the lost OB will be induced due to the the two resonant frequencies shifting towards two sides. In addition, the dielectric layers also have a greater influence on OB near the lower resonant frequencies at a smaller incident angle.
    • 基金项目: 国家自然科学基金(批准号: 11074061,11104050), 黑龙江省自然科学基金(批准号: A200910), 教育厅青年学术骨干项目(批准号: 1251G030), 哈尔滨师范大学省级预研项目(批准号: 09XYS-01)和哈尔滨市青年科技创新人才项目(批准号: RC2011QN001011)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074061, 11104050), the Nature Science Foundation of Heilongjiang, China(Grant No. A200910) , the Young Academic Backbone of Education Commission (Grant No. 1251 G030) , the Advanced Project Foundation of Harbin Normal University (Grant No. 09XYS-01), and the Technological Innovation Talents Foundation of Harbin City, China(Grant No.RC2011QN001011).
    [1]

    Lyubchanskii I L, Dadoenkova N N, Lyubchanskii M I, Shapovalov E A, Th Rasing 2003 J. Phys. D: Appl. Phys. 36 R277

    [2]

    Zhao Y T, Zhang Q, Bai J, Fu S F, Zhou S 2011 Acta Phys. Sin. 60 077503 (in Chinese) [赵玉田, 张强, 白晶, 付淑芳, 周胜 2011 物理学报 60 077503]

    [3]

    Li L, Zhou Q L, Shi Y L 2011 Acta Phys. Sin. 60 019503 (in Chinese)[李磊, 周庆莉, 施宇蕾 2011 物理学报 60 019503]

    [4]

    Zhao Y, Gao H, Zhou S, Wang X Z 2007 J. Magn. Magn. Mater. 320 2696

    [5]

    Abraha K, Tilley D R 1996 Surf. Sci. Rep. 24 129

    [6]

    Zhu R H, Fu S N, Peng H Y 2011 J. Magn. Magn. Mater 323 145

    [7]

    Wang X Z 2005 J. Phys. Condens. Matter 17 5447

    [8]

    Inoue M, Fujii T 1997 J. Appl. Phys. 81 5659

    [9]

    Surtherland R L 1996 Handbook of Nonlinear Optics (New York: Marcel Dekker Inc, 1996)

    [10]

    Aktsipetrov O A, Braginskii O V, Esikov E A 1990 Soviet Journal of Quantum Electronics 20 259

    [11]

    Wang X Z, Fu S F 2004 J. Magn. Magn. Mater. 271 334

    [12]

    Wang X Z, Li H 2005 Phys. Rev. B72 054403

    [13]

    Zhou S, Li H, Fu S F, Wang X Z 2009 Phys. Rev. B 80 205409

    [14]

    Zhou S, Li H , Fu S F,Wang X Z 2008 J. Opt. Soc. Am. B 25 1639

    [15]

    Fedynin A A, Yoshida T, Nishimura K, Marowsky G, Inoue M, Aktsipetrouva O A 2003 J. Magn. Magn. Mater. 96 258

    [16]

    Liu N H 1997 Phys. Rev. B 55 409724100

    [17]

    Almeida N S, Mills D L 1987 Phys. Rev. B 36 2015

    [18]

    Kahn L, Almeida N S, Mills D L 1988 Phys. Rev. B 37 8072

    [19]

    Wang X Z, Li H, 2011 Intech-Open Access Publisher. Chapter 3

    [20]

    Zhao Y, Fu S F, Li H, Wang X Z 2011 J. Appl. Phys 110 023512

    [21]

    Sun D M, Fu S F, Zhou S, Wang X Z 2012 J Magn. Magn. Mater (in Press)

    [22]

    Liu J H, Wan Y, Han W J, Yang H W, Zhang H J, Wang J Y, Valentin Petrov 2010 Acta. Phys. Sin. 59 293 (in Chinese) [刘海均, 万勇, 韩文娟, 杨红卫张怀金, 王继扬 Valentin Petrov 2010 物理学报 59 293]

    [23]

    Chen A X, Chen D H, Wang Z P 2009 Acta. Phys. Sin. 58 5450 (in Chinese) [陈爱喜, 陈德海, 王志平 2009 物理学报 58 5450]

    [24]

    Guan R H 2010 Acta. Phys. Sin. 60 016105 (in Chinese) [关荣华 2010 物理学报 60 016105]

  • [1]

    Lyubchanskii I L, Dadoenkova N N, Lyubchanskii M I, Shapovalov E A, Th Rasing 2003 J. Phys. D: Appl. Phys. 36 R277

    [2]

    Zhao Y T, Zhang Q, Bai J, Fu S F, Zhou S 2011 Acta Phys. Sin. 60 077503 (in Chinese) [赵玉田, 张强, 白晶, 付淑芳, 周胜 2011 物理学报 60 077503]

    [3]

    Li L, Zhou Q L, Shi Y L 2011 Acta Phys. Sin. 60 019503 (in Chinese)[李磊, 周庆莉, 施宇蕾 2011 物理学报 60 019503]

    [4]

    Zhao Y, Gao H, Zhou S, Wang X Z 2007 J. Magn. Magn. Mater. 320 2696

    [5]

    Abraha K, Tilley D R 1996 Surf. Sci. Rep. 24 129

    [6]

    Zhu R H, Fu S N, Peng H Y 2011 J. Magn. Magn. Mater 323 145

    [7]

    Wang X Z 2005 J. Phys. Condens. Matter 17 5447

    [8]

    Inoue M, Fujii T 1997 J. Appl. Phys. 81 5659

    [9]

    Surtherland R L 1996 Handbook of Nonlinear Optics (New York: Marcel Dekker Inc, 1996)

    [10]

    Aktsipetrov O A, Braginskii O V, Esikov E A 1990 Soviet Journal of Quantum Electronics 20 259

    [11]

    Wang X Z, Fu S F 2004 J. Magn. Magn. Mater. 271 334

    [12]

    Wang X Z, Li H 2005 Phys. Rev. B72 054403

    [13]

    Zhou S, Li H, Fu S F, Wang X Z 2009 Phys. Rev. B 80 205409

    [14]

    Zhou S, Li H , Fu S F,Wang X Z 2008 J. Opt. Soc. Am. B 25 1639

    [15]

    Fedynin A A, Yoshida T, Nishimura K, Marowsky G, Inoue M, Aktsipetrouva O A 2003 J. Magn. Magn. Mater. 96 258

    [16]

    Liu N H 1997 Phys. Rev. B 55 409724100

    [17]

    Almeida N S, Mills D L 1987 Phys. Rev. B 36 2015

    [18]

    Kahn L, Almeida N S, Mills D L 1988 Phys. Rev. B 37 8072

    [19]

    Wang X Z, Li H, 2011 Intech-Open Access Publisher. Chapter 3

    [20]

    Zhao Y, Fu S F, Li H, Wang X Z 2011 J. Appl. Phys 110 023512

    [21]

    Sun D M, Fu S F, Zhou S, Wang X Z 2012 J Magn. Magn. Mater (in Press)

    [22]

    Liu J H, Wan Y, Han W J, Yang H W, Zhang H J, Wang J Y, Valentin Petrov 2010 Acta. Phys. Sin. 59 293 (in Chinese) [刘海均, 万勇, 韩文娟, 杨红卫张怀金, 王继扬 Valentin Petrov 2010 物理学报 59 293]

    [23]

    Chen A X, Chen D H, Wang Z P 2009 Acta. Phys. Sin. 58 5450 (in Chinese) [陈爱喜, 陈德海, 王志平 2009 物理学报 58 5450]

    [24]

    Guan R H 2010 Acta. Phys. Sin. 60 016105 (in Chinese) [关荣华 2010 物理学报 60 016105]

  • [1] 陈娟, 胡巍, 陆大全. 三阶非线性效应对边界限制的自聚焦振荡型响应函数系统中二次孤子的影响. 物理学报, 2022, 71(21): 214205. doi: 10.7498/aps.71.20220865
    [2] 李梦梦, 朱宝华, 冉霞, 刘波, 郭立俊. 新型偶氮苯衍生物的三阶非线性光学特性. 物理学报, 2016, 65(2): 024207. doi: 10.7498/aps.65.024207
    [3] 陈盈盈, 韩奎, 李海鹏, 李明雪, 唐刚, 沈晓鹏. 轮烯衍生物电子结构及三阶非线性光学性质的理论研究. 物理学报, 2015, 64(12): 127801. doi: 10.7498/aps.64.127801
    [4] 李卓斌, 林常规, 聂秋华, 徐铁峰, 戴世勋. GeS2-Ga2S3-CsCl玻璃的三阶非线性光学性能研究. 物理学报, 2012, 61(10): 104207. doi: 10.7498/aps.61.104207
    [5] 高潮, 邱少君, 杜渭松, 侯超奇, 郭红艳, 杨钊飞. 一种侧链共轭噻吩共聚物增强的三阶非线性光学特性. 物理学报, 2011, 60(4): 044211. doi: 10.7498/aps.60.044211
    [6] 郑加金, 陆云清, 李培丽. 激发态分子内质子转移有机分子HBT的三阶非线性光学特性. 物理学报, 2010, 59(7): 4687-4693. doi: 10.7498/aps.59.4687
    [7] 高潮, 肖奇, 邱少君, 侯超奇, 许培培, 刘建群. 一种侧链共轭聚噻吩衍生物薄膜的三阶非线性光学响应. 物理学报, 2009, 58(5): 3578-3583. doi: 10.7498/aps.58.3578
    [8] 陈爱平, 龙华, 王凯, 杨光, 付明, 李玉华, 陆培祥. CuO薄膜的三阶非线性光学特性研究. 物理学报, 2009, 58(1): 607-611. doi: 10.7498/aps.58.607
    [9] 吴文智, 郑植仁, 金钦汉, 闫玉禧, 刘伟龙, 张建平, 杨延强, 苏文辉. 水溶性CdTe量子点的三阶光学非线性极化特性. 物理学报, 2008, 57(2): 1177-1182. doi: 10.7498/aps.57.1177
    [10] 封 伟, 易文辉, 冯奕钰, 吴子刚, 张振中. 聚苯胺/碳纳米管复合体的制备及其三阶非线性光学性能研究. 物理学报, 2006, 55(7): 3772-3777. doi: 10.7498/aps.55.3772
    [11] 易文辉, 徐友龙, 封 伟, 吴洪才, 高 潮. 可溶性聚噻吩甲烯包覆碳纳米管的三阶非线性光学响应. 物理学报, 2006, 55(7): 3736-3742. doi: 10.7498/aps.55.3736
    [12] 陈煜, 李云静, 聂玉昕, 王夺元. 8-辛烷氧基金属酞菁的皮秒三阶光学非线性与光限幅特性. 物理学报, 2002, 51(3): 578-583. doi: 10.7498/aps.51.578
    [13] 朱善华, 崔维娜, 黄国翔. 具有二阶和三阶非线性一维光子晶体中的耦合模孤子. 物理学报, 2002, 51(4): 789-795. doi: 10.7498/aps.51.789
    [14] 肖万能, 李润华, 曾学然, 周达君, 周建英, 巢 晖, 叶保辉, 计亮年. 新型Ru配合物三阶非线性光学性质的Z-扫描研究. 物理学报, 2000, 49(6): 1086-1090. doi: 10.7498/aps.49.1086
    [15] 余保龙, 顾玉宗, 毛艳丽, 郭立峻, 符瑞生, 朱从善, 干福熹. 半导体PbS纳米微粒的三阶非线性光学特性. 物理学报, 2000, 49(2): 324-327. doi: 10.7498/aps.49.324
    [16] 梁志坚, 唐福龙, 干福熹, 孙真荣, 杨希华, 丁良恩, 王祖赓. 一种新的亚酞菁的共振三阶非线性光学性质. 物理学报, 2000, 49(2): 252-255. doi: 10.7498/aps.49.252
    [17] 汪映海, 胡成生, 汪志诚. 吸收型双光子光学双稳态的时间行为. 物理学报, 1992, 41(10): 1598-1604. doi: 10.7498/aps.41.1598
    [18] 朱诗尧. 双光子光学双稳态的研究. 物理学报, 1984, 33(1): 16-24. doi: 10.7498/aps.33.16
    [19] 甘子钊, 杨国桢. 关于激子谱线近傍的三阶非线性光学系数. 物理学报, 1982, 31(4): 503-509. doi: 10.7498/aps.31.503
    [20] 甘子钊, 杨国桢. 关于半导体吸收边附近的三阶非线性光学常数. 物理学报, 1982, 31(2): 237-242. doi: 10.7498/aps.31.237
计量
  • 文章访问数:  6386
  • PDF下载量:  501
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-15
  • 修回日期:  2011-12-31
  • 刊出日期:  2012-08-05

/

返回文章
返回