搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波-声子与光-磁纠缠态的产生

徐明慧 刘晓敏 史佳佳 张冲 张静 杨荣国 郜江瑞

引用本文:
Citation:

微波-声子与光-磁纠缠态的产生

徐明慧, 刘晓敏, 史佳佳, 张冲, 张静, 杨荣国, 郜江瑞

Generation of microwave-phonon and magnon-optics entangled states

XU Minghui, LIU Xiaomin, SHI Jiajia, ZHANG Chong, ZHANG Jing, YANG Rongguo, GAO Jiangrui
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 量子纠缠是量子计算和量子通信网络的核心资源. 本文提出了一种在腔光磁力系统中同时获得微波-声子和光-磁纠缠的理论模型. 该模型基于磁振子的混合量子系统, 注入由超导电光装置产生的光-微波纠缠光束作为内腔场, 并且用蓝失谐微波场激发磁振子模式产生磁振子-声子纠缠. 通过光力分束器及微波-磁子状态交换相互作用转移纠缠, 最终可以获得微波-声子和光-磁纠缠. 理论上从系统哈密顿量和量子郎之万方程出发, 得到漂移矩阵 A , 由漂移矩阵的负本征值保证文章计算的纠缠处于稳定状态. 再利用对数负性分析研究了系统中量子纠缠的特性与相关参数的依赖关系. 研究表明, 该系统可同时获得微波-声子以及光-磁之间稳态纠缠, 并且在系统中直接注入纠缠的微波与光可以显著地提升纠缠对温度的鲁棒性. 该研究将在量子网络和混合量子系统的量子信息处理方面奠定基础.
    Quantum entanglement is a key resource for performing quantum computing and building quantum communication networks. By injecting a microwave-optical dual-mode entanglement field into the system, as well as pumping the optical and microwave cavities, and by appropriately choosing the detuning relationship between the pumping field and the modes, it is shown in this work that microwave-phonon entanglement Eab and magnon-optics entanglement Ecm can be generated simultaneously in the cavity opto-magnomechanic system, and the entanglement can be in a steady state. Specifically, the model is based on a hybrid quantum system of magnons, where a microwave-light entanglement generated by an optically pulsed superconducting electro-optical device through spontaneous parametric down-conversion process is injected as the intracavity field, and a blue-detuned microwave field is used to excite the magnon modes to produce magnon-phonon entanglement. Through the interaction between an optomechanical beam splitter and microwave-magnon state-swap, steady microwave-phonon entanglement Eab and magnon-optics entanglement Ecm are successfully realized. The entanglement Eab and Ecm in the system are analyzed using the logarithmic negativity. The effects of several parameters of the system, such as environment temperature, coupling strength and dissipation rate, on the degree of entanglement are investigated. In particular, the entanglement Eab and Ecm generated in this system can exist both simultaneously and individually. Especially when gam=0, the entanglement Eab and Ecm still exist. Moreover, directly injecting entangled microwave-light into the system can significantly enhance the robustness of the entanglement against temperature, which will have broad application prospects in quantum information processing in quantum networks and hybrid quantum systems. Notably, the entanglement Eab and Ecm exist even at a temperature of 1.3 K. Our research has potential value for applications in the fields of quantum information processing and quantum networks.
  • 图 1  (a), (b) OMM系统示意图. YIG晶体中的磁振子模式m耦合到微波腔模a并且通过磁致伸缩引起振动声子b耦合到光学腔模c. 图(b)中蓝色(红色)线表示参量下转换(分束器)相互作用; (c)模型采用的模式频率和带宽. 当光学腔模与驱动激光场的反斯托克斯边带(蓝色)在频率为($ {\omega _{\text{l}}} + {\omega _{\text{b}}} $)处共振, 并且磁子模和微波腔模同时与微波驱动场的斯托克斯边带(红色)在频率为($ {\omega _0} - {\omega _{\text{b}}} $)处共振, 可以建立微波-声子以及光-磁子之间的稳态纠缠EabEcm

    Fig. 1.  (a), (b) OMM system scheme. A magnon mode m in a YIG crystal couples to a microwave cavity mode a and to an optical cavity mode c via the mechanical vibration b induced by the magnetostriction. The blue (red) line in Figure (b) denotes the effective parametric down-conversion (beam-splitter) interaction; (c) mode frequency and bandwidth used adopted in the protocol. When the optical cavity is resonant with the (blue) anti-Stokes sideband of the driving laser at frequency ($ {\omega _0} - {\omega _{\text{b}}} $), and the magnon and microwave cavity modes are resonant with the (red) Stokes sideband of the microwave drive field at frequency ($ {\omega _{\text{l}}} + {\omega _{\text{b}}} $), microwave-mechanics entanglement Eab and magnon-optics entanglement Ecm can be generated at steady state.

    图 2  稳态纠缠随磁子模式和微波腔模式有效失谐量变化密度图 (a)微波-声子纠缠Eab; (b)光-磁纠缠Ecm

    Fig. 2.  Density plot of steady-state entanglement versus effective detunings ${\varDelta _{\text{a}}}$ and ${\tilde \varDelta _{\text{m}}}$: (a) Microwave-mechanics entanglement Eab; (b) magnon-optics entanglement Ecm.

    图 3  微波-声子, 光-磁以及微波-光纠缠随压缩参数r的变化

    Fig. 3.  Stationary microwave-mechanics entanglement Eab, magnon-optics entanglement Ecm and microwave-optics entanglement Eac versus squeezing parameter r.

    图 4  光-磁和微波-声子之间纠缠随有效耦合强度变化 (a)有效光力耦合强度Gc; (b)有效磁力耦合强度Gm; (c)微波-磁子耦合强度gam

    Fig. 4.  Stationary magnon-optics entanglement Ecm and microwave-mechanics entanglement Eab versus effective coupling strength: (a) The effective optomechanical coupling strength Gc; (b) the effective magno-mechanical coupling strength Gm; (c) the microwave-magnon coupling rate gam.

    图 5  微波-声子以及光-磁之间纠缠随不同模式耗散率变化 (a) 微波腔模耗散率$ {\kappa _{\text{a}}} $; (b) 磁振子模耗散率$ {\kappa _{\text{m}}} $; (c) 光学腔模耗散率$ {\kappa _{\text{c}}} $

    Fig. 5.  Stationary microwave-mechanics entanglement Eab and magnon-optics entanglement Ecm versus dissipation rates: (a) Microwave cavity mode dissipation rate $ {\kappa _{\text{a}}} $; (b) magnon mode dissipation rate $ {\kappa _{\text{m}}} $; (c) optical cavity mode dissipation rate $ {\kappa _{\text{c}}} $.

    图 6  微波-声子以及光-磁之间纠缠 (a) 随温度T变化; (b) 随机械振子耗散率$ {\gamma _{\text{b}}} $变化

    Fig. 6.  Stationary microwave-mechanics entanglement Eab and magnon-optics entanglement Ecm versus: (a) Temperature T; (b) mechanical damping rate $ {\gamma _{\text{b}}} $.

  • [1]

    Tang J F, Hou Z B, Shang J W , Zhu H J, Xiang G Y, Li C F, Guo G C 2020 Phys. Rev. Lett. 124 060502

    [2]

    Konrad T, De Melo F, Tiersch M, Kasztelan C, Aragão A, 2008 Buchleitner A Nat. Phys. 4 99Google Scholar

    [3]

    Aspelmeyer M, Böhm H R, Gyatso T, Jennewein T, Kaltenbaek R, Lindenthal M, Molina-Terriza G, Poppe A, Taraba M, Ursin R, Walther P, Zeilinger A 2003 Science 301 621Google Scholar

    [4]

    杨荣国, 张超霞, 李妮, 张静, 郜江瑞 2019 物理学报 68 094205Google Scholar

    Yang R G, Zhang C X, Li N, Zhang J, Gao J R 2019 Acta Phys. Sin. 68 094205Google Scholar

    [5]

    Liang Y Y, Yang R G, Zhang J, Zhang T C 2023 Opt. Express 31 11775Google Scholar

    [6]

    Zhang K, Wang W, Liu S H, Pan X Z, Du J J, Lou Y B, Yu S, Lü S C, Treps N, Fabre C, Jing J T 2020 Phys. Rev. Lett. 124 090501Google Scholar

    [7]

    郝景晨, 杜培林, 孙恒信, 刘奎, 张静, 杨荣国, 郜江瑞 2024 物理学报 73 074203Google Scholar

    Hao J C, Du P L, Sun H X, Liu K, Zhang J, Yang R G, Gao J R 2024 Acta Phys. Sin. 73 074203Google Scholar

    [8]

    闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 物理学报 61 014206Google Scholar

    Yan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206Google Scholar

    [9]

    Liu K, Cui S Z, Yang R G, Zhang J X, Gao J R 2012 Chin. Phys. Lett. 29 060304Google Scholar

    [10]

    刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞 2024 物理学报 29 124203

    Liu K, Ma L, Su B D, Li J M, Sun H X, Gao J R 2020 Acta Phys. Sin. 69 124203

    [11]

    Yang R G, Zhang J, Klich I, González-Arciniegas C, Pfister O 2020 Phys. Rev. A 101 043832Google Scholar

    [12]

    Du P L, Wang Y, Liu K, Yang R G, Zhang J 2023 Opt. Express 31 479420

    [13]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [14]

    Liu X M, Yang R G, Zhang J, Zhang T C 2023 Opt. Express 31 30005Google Scholar

    [15]

    罗均文, 吴德伟, 苗强, 魏天丽 2020 物理学报 69 054203Google Scholar

    Luo J W, Wu D W, Miao Q, Wei T L 2020 Acta Phys. Sin. 69 054203Google Scholar

    [16]

    Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710Google Scholar

    [17]

    Riedinger R, Wallucks A, Marinkovi´c I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473Google Scholar

    [18]

    Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A, Schwab K C 2015 Science 349 952Google Scholar

    [19]

    Zhang X F, Zou C L, Jiang L, Tang H X 2016 Sci. Adv. 2 e1501286Google Scholar

    [20]

    Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys. Rev. Lett. 129 123601Google Scholar

    [21]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003Google Scholar

    [22]

    Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603Google Scholar

    [23]

    Bai L, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C M 2015 Phys. Rev. Lett. 114 227201Google Scholar

    [24]

    Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M, Nakamura Y 2016 Phys. Rev. Lett. 116 223601Google Scholar

    [25]

    Zhang X F, Zhu N, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123605Google Scholar

    [26]

    Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y, Usami K 2018 Phys. Rev. Lett. 120 133602Google Scholar

    [27]

    Zhu N, Zhang X, Han X, Zou C L, Zhong C, Wang C H, Jiang L, Tang H X 2020 Optica 7 1291Google Scholar

    [28]

    Haigh J A, Nunnenkamp A, Ramsay A J 2021 Phys. Rev. Lett. 127 143601Google Scholar

    [29]

    Yang Z B, Liu X D, Yin X Y, Ming Y, Liu H Y, Yang R C 2021 Phys. Rev. Appl. 15 024042Google Scholar

    [30]

    Yin X Y, Yang Z B, Huang Y M, Wan Q M, Yang R C, Liu H Y 2023 Ann. Phys. 535 2200603Google Scholar

    [31]

    Fan Z Y, Shen R C, Wang Y P, Li J, You J Q 2022 Phys. Rev. A 105 033507Google Scholar

    [32]

    Fan Z Y, Qian H, Li J 2023 Quantum Sci. Technol. 8 015014Google Scholar

    [33]

    Fan Z Y, Qiu L, Gröblacher S, Li J 2023 Laser Photonics Rev. 17 2200866Google Scholar

    [34]

    Rueda A, Hease W, Barzanjeh S, Fink J M 2019 npj Quantum Inf. 5 108Google Scholar

    [35]

    Hease W, Rueda A, Sahu R, Wulf M, Arnold G, Schwefel H G L, Fink J M 2020 PRX Quantum 1 020315Google Scholar

    [36]

    Andersen U L, Gehring T, Marquardt C, Leuchs G 2016 Phys. Scr. 91 053001Google Scholar

    [37]

    Sahu R, Qiu L, Hease W, Arnold G, Minoguchi Y, Rabl P, Fink J M 2023 Science 380 718Google Scholar

    [38]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601Google Scholar

    [39]

    Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Express 12 070101Google Scholar

    [40]

    Heyroth F, Hauser C, Trempler P, Geyer P, Syrowatka F, Dreyer R, Ebbinghaus S G, Woltersdorf G, Schmidt G 2019 Phys. Rev. Appl. 12 054031Google Scholar

    [41]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314Google Scholar

    [42]

    Plenio M B 2005 Phys. Rev. Lett. 95 090503Google Scholar

    [43]

    Tan H T, Deng W W, Li G X 2017 Phys. Rev. A 95 053842Google Scholar

    [44]

    Luo Y X, Cong L J, Zheng Z G, Liu H Y, Ming Y, Yang R C 2023 Opt. Express 31 34764Google Scholar

  • [1] 郝景晨, 杜培林, 孙恒信, 刘奎, 张静, 杨荣国, 郜江瑞. 双端腔Ⅱ类倍频产生四组份纠缠光场. 物理学报, doi: 10.7498/aps.73.20231630
    [2] 陈锋, 任刚. 基于纠缠态表象的双模耦合谐振子量子特性分析. 物理学报, doi: 10.7498/aps.73.20241303
    [3] 徐笑吟, 刘胜帅, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, doi: 10.7498/aps.71.20211324
    [4] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, doi: 10.7498/aps.70.20211324
    [5] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控. 物理学报, doi: 10.7498/aps.68.20181837
    [6] 王灿灿. 量子纠缠与宇宙学弗里德曼方程. 物理学报, doi: 10.7498/aps.67.20180813
    [7] 黄馨瑶, 项玉, 孙风潇, 何琼毅, 龚旗煌. 平面自旋压缩态的产生与原子干涉的机理. 物理学报, doi: 10.7498/aps.64.160304
    [8] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, doi: 10.7498/aps.61.210502
    [9] 廖庆洪, 刘晔. 陆续通过一个双模腔的两原子之间纠缠的突然产生和调控. 物理学报, doi: 10.7498/aps.61.150301
    [10] 刘圣鑫, 李莎莎, 孔祥木. Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响. 物理学报, doi: 10.7498/aps.60.030303
    [11] 徐岩, 樊炜, 陈兵, 李照鑫. S=1旋量Bose-Einstein凝聚中制备双模最大纠缠态方案. 物理学报, doi: 10.7498/aps.60.060305
    [12] 王淑静, 马善钧. 由光分束器和起偏器混合产生的三模纠缠态表象. 物理学报, doi: 10.7498/aps.60.030302
    [13] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, doi: 10.7498/aps.59.2193
    [14] 刘小娟, 刘一曼, 周并举. 原子与双模相干强场依赖强度耦合多光子过程中纠缠量度与制备. 物理学报, doi: 10.7498/aps.59.8518
    [15] 熊恒娜, 郭 红, 江 健, 陈 俊, 唐丽艳. 原子间纠缠和光场模间纠缠的对应关系. 物理学报, doi: 10.7498/aps.55.2720
    [16] 张 茜, 李福利, 李宏荣. 基于双模压缩信道的双模高斯态量子隐形传态. 物理学报, doi: 10.7498/aps.55.2275
    [17] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠. 物理学报, doi: 10.7498/aps.55.4631
    [18] 周青春, 祝世宁. Λ型三能级原子与数态单模光场互作用系统的纠缠特性. 物理学报, doi: 10.7498/aps.54.2043
    [19] 黄燕霞, 赵朋义, 黄熙, 詹明生. 压缩真空场与原子非线性作用过程中的纠缠与消纠缠. 物理学报, doi: 10.7498/aps.53.75
    [20] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干. 物理学报, doi: 10.7498/aps.51.1989
计量
  • 文章访问数:  442
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-01
  • 修回日期:  2024-12-26
  • 上网日期:  2025-01-02

/

返回文章
返回