搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波-声子与光-磁纠缠态的产生

徐明慧 刘晓敏 史佳佳 张冲 张静 杨荣国 郜江瑞

Liu Ni, Ma Shuo, Liang Jiu-Qing. Nonreciprocal transmission characteristics in double-cavity double-optomechanical system. Acta Phys. Sin., 2023, 72(6): 060702. doi: 10.7498/aps.72.20222246
Citation: Liu Ni, Ma Shuo, Liang Jiu-Qing. Nonreciprocal transmission characteristics in double-cavity double-optomechanical system. Acta Phys. Sin., 2023, 72(6): 060702. doi: 10.7498/aps.72.20222246

微波-声子与光-磁纠缠态的产生

徐明慧, 刘晓敏, 史佳佳, 张冲, 张静, 杨荣国, 郜江瑞
cstr: 32037.14.aps.74.20241664

Generation of microwave-phonon and magnon-optics entangled states

XU Minghui, LIU Xiaomin, SHI Jiajia, ZHANG Chong, ZHANG Jing, YANG Rongguo, GAO Jiangrui
cstr: 32037.14.aps.74.20241664
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 量子纠缠是量子计算和量子通信网络的核心资源. 本文提出了一种在腔光磁力系统中同时获得微波-声子和光-磁纠缠的理论模型. 该模型基于磁振子的混合量子系统, 注入由超导电光装置产生的光-微波纠缠光束作为内腔场, 并且用蓝失谐微波场激发磁振子模式产生磁振子-声子纠缠. 通过光力分束器及微波-磁子状态交换相互作用转移纠缠, 最终可以获得微波-声子和光-磁纠缠. 理论上从系统哈密顿量和量子郎之万方程出发, 得到漂移矩阵 A , 由漂移矩阵的负本征值保证文章计算的纠缠处于稳定状态. 再利用对数负性分析研究了系统中量子纠缠的特性与相关参数的依赖关系. 研究表明, 该系统可同时获得微波-声子以及光-磁之间稳态纠缠, 并且在系统中直接注入纠缠的微波与光可以显著地提升纠缠对温度的鲁棒性. 该研究将在量子网络和混合量子系统的量子信息处理方面奠定基础.
    Quantum entanglement is a key resource for performing quantum computing and building quantum communication networks. By injecting a microwave-optical dual-mode entanglement field into the system, as well as pumping the optical and microwave cavities, and by appropriately choosing the detuning relationship between the pumping field and the modes, it is shown in this work that microwave-phonon entanglement Eab and magnon-optics entanglement Ecm can be generated simultaneously in the cavity opto-magnomechanic system, and the entanglement can be in a steady state. Specifically, the model is based on a hybrid quantum system of magnons, where a microwave-light entanglement generated by an optically pulsed superconducting electro-optical device through spontaneous parametric down-conversion process is injected as the intracavity field, and a blue-detuned microwave field is used to excite the magnon modes to produce magnon-phonon entanglement. Through the interaction between an optomechanical beam splitter and microwave-magnon state-swap, steady microwave-phonon entanglement Eab and magnon-optics entanglement Ecm are successfully realized. The entanglement Eab and Ecm in the system are analyzed using the logarithmic negativity. The effects of several parameters of the system, such as environment temperature, coupling strength and dissipation rate, on the degree of entanglement are investigated. In particular, the entanglement Eab and Ecm generated in this system can exist both simultaneously and individually. Especially when gam = 0, the entanglement Eab and Ecm still exist. Moreover, directly injecting entangled microwave-light into the system can significantly enhance the robustness of the entanglement against temperature, which will have broad application prospects in quantum information processing in quantum networks and hybrid quantum systems. Notably, the entanglement Eab and Ecm exist even at a temperature of 1.3 K. Our research has potential value for applications in the fields of quantum information processing and quantum networks.
      通信作者: 杨荣国, yrg@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFC2201802)、国家自然科学基金(批准号: 11874248, 11874249)和雷达信号处理全国重点实验室基金(批准号: JKW202401)资助的课题.
      Corresponding author: YANG Rongguo, yrg@sxu.edu.cn
    • Funds: Project supported by the National Research and Develoment Program of China (Grant No. 2021YFC2201802), the National Natural Science Foundation of China (Grant Nos. 11874248, 11874249), and the Foundation of National Key Laboratory of Radar Signal Processing, China (Grant No. JKW202401).

    光学非互易性是指系统的输入端和输出端交换位置后所表现出的具有不同光学响应的性质, 一般指促进光场的正向传输并抑制反方向传输这一特性. 例如光隔离器[1,2]、环形器[3]和定向放大器[4]等非互易器件不仅是光学系统中重要的组成部分, 而且在构建量子网络和实现量子通信上也具有重要应用. 实现光学非互易传输首先要打破洛伦兹互易定理, 目前主要实现方法是基于法拉第磁致旋光效应通过磁光材料来改变信号的偏振状态[5], 但该方法工艺复杂且需要强磁场, 使得光学非互易器件难以实现片上集成. 此外, 其他实现非互易特性的方法有手性量子光学[6-8], 利用非线性光学介质[9]、系统参数的时空调制[10], 原子系综的光诱导磁化[11] 、热原子碰撞[12], 谐振模式下损耗的诱导[13]和量子压缩[14], 以及光机械相互作用[15,16]等. 手性量子光学[6-8]是实现光学非互易的重要方法之一, 通过环形腔与量子发射器的手性耦合来实现光非互易性, 并且这种方法有望实现片上集成.

    光力耦合作用实质上是通过辐射压力实现的, 光学腔和力学振子耦合构成的腔光力学系统是近些年研究的热点. 该系统是观察宏观量子效应和验证量子力学基本规律的重要平台, 能够产生很多量子效应, 如量子纠缠[17]和力学振子的基态冷却[18,19]等; 同时可观察到很多量子光学现象, 如光力诱导透明[20]、光力诱导吸收和放大[21]、Fano共振[22]; 还广泛应用于光信息存储[23]、快光和慢光效应[24]等. 此外, 随着纳米技术的发展, 该系统中力学振子的空间尺度可达到纳米级别, 这为实现非互易器件的片上集成提供了可能. Xu和Li[25]在三模光力系统中实现了光学非互易性, 通过调控光力耦合率间的相位差来启动非互易响应, 这诱导了系统的时间反演对称性破缺. 最有趣的是, 该三模光力系统不仅可用于两光学模和机械模间的三端口光力循环器, 而且可用于单光子级别并集成到芯片, 还可能将三端口光力循环器最终提供量子信息处理和量子模拟应用的基础. 基于此我们提出在双光力系统中, 通过两种大小不同的光力耦合作用(即系统包含两个不同的力学振子)来实现更加新奇的光非互易特性. 理论上提出的双腔光力系统实验上可通过芯片上的微波循环器来实现, 主要采用频率可调的硅上绝缘体的电磁系统来实现芯片上的微波循环器. 具体为将两个独立的光力变频器组合在一起, 通过同时耦合两个电磁腔模式到两个不同的振动模式的机械模[15,16].

    研究由两个光学腔与两个力学振子组成的双光力系统如图1所示, aibj分别表示光学腔和力学振子的湮灭算符(i,j=1,2), ωiωm分别表示对应的本征频率. 两光学腔作为系统的输入端或输出端分别与两力学振子相耦合, 耦合常数gij表示光学腔ai与力学振子bj之间的光子耦合强度. 两光学腔之间存在直接耦合, 耦合强度为J(a1a2+a2a1), J表示腔模间线性耦合强度. 频率为ωd的驱动场和频率为ωp的探测场从两侧对光学腔进行驱动, εdiεpi分别是驱动场和探测场的振幅, 它们和功率之间的关系是εdi,pi=2Pdi,pi/(ωd, p).

    图 1 双腔双光力系统示意图, 其中光学腔${a_i}$通过光力耦合相互作用${g_{ij}}$与力学振子${b_j}$相耦合, 同时两光学腔之间存在腔模线性耦合相互作用, 腔模两侧存在振幅为${\varepsilon _{{\text{d}}i}}$的驱动场和${\varepsilon _{{\text{p}}i}}$的探测场\r\nFig. 1. Diagram of double-cavity dual-optomechanical system. The optical cavity ${a_i}$ is coupled to the mechanical oscillator ${b_j}$ by the optomechanical coupling interaction $ {g}_{ij}$. And there is a cavity mode linear coupling interaction between two optical cavities, and there are the coupling fields with amplitude ${\varepsilon _{{\text{d}}i}}$ and the probe fields with amplitude ${\varepsilon _{{\text{p}}i}}$ on both sides of the cavity modes.
    图 1  双腔双光力系统示意图, 其中光学腔ai通过光力耦合相互作用gij与力学振子bj相耦合, 同时两光学腔之间存在腔模线性耦合相互作用, 腔模两侧存在振幅为εdi的驱动场和εpi的探测场
    Fig. 1.  Diagram of double-cavity dual-optomechanical system. The optical cavity ai is coupled to the mechanical oscillator bj by the optomechanical coupling interaction gij. And there is a cavity mode linear coupling interaction between two optical cavities, and there are the coupling fields with amplitude εdi and the probe fields with amplitude εpi on both sides of the cavity modes.

    系统的哈密顿量是

    H=2iωiaiai+2jωmbjbj+J(a1a2+a2a1)+2i,jgijaiai(bj+bj)+i2i(aiεdieiωdtaiεdieiωdt)+i2i(aiεpieiωptaiεpieiωpt).
    (1)

    系统相对驱动场频率ωd做旋转后, 根据海森伯运动方程及对易关系[ai,ai]=1, [bi,bi]=1, 并且唯象地引入耗散速率, 系统中光学腔与力学振子的量子朗之万方程被得到

    ˙ai=iΔiaiiJa3ii2jgijai(bj+bj)+εdi+εpieiΔtκiai,˙bj=iωmbji2igijaiaiγjbj,
    (2)

    其中Δ=ωpωd表示探测场与驱动场之间的失谐, Δi=ωiωd表示光学腔ai与驱动场之间的失谐, κiγj分别是aibj的耗散速率.

    假设没有探测场时, 令方程(2)的时间求导项为0, 即可得到稳态平均值:

    a1s=iJεd2+(κ2+iΔ2)εd1(κ1+iΔ1)(κ2+iΔ2)+J2,a2s=iJεd1+(κ1+iΔ1)εd2(κ1+iΔ1)(κ2+iΔ2)+J2,bjs=i2igij|ais|2γj+iωm,
    (3)

    其中, Δi=Δi+2jgij(bjs+bjs).

    将系统算符用平均值和各自的相对涨落值来表示, 即ai=ais+δai, bj=bjs+δbj, 并且保留其中的线性项, 得到线性化的海森伯-朗之万方程:

    δ˙ai=iΔiδaiiJδa3iieiαi2jGij(δbj+δbj)+εpieiΔtκiδai,δ˙bj=iωmδbji2iGij(δaieiαi+δaieiαi)γjδbj,
    (4)

    其中, Gij=gij|ais|表示光腔模i和力学振子j之间的有效光力耦合强度, 满足Gijeiαi=gijais. 采用相互作用表象δaiδaieiΔit, δbjδbjeiωmt, 得到

    δ˙ai=iJδa3iei(Δ3iΔi)tieiαi×2jGij[δbjei(ωm+Δi)t+δbjei(ωmΔi)t]+εpiei(ΔΔi)tκiδai,δ˙bj=i2iGij[eiαiδaiei(Δiωm)t+eiαiδaiei(Δi+ωm)t]γjδbj.
    (5)

    接着采用红失谐驱动, 即x=Δωm, Δ1=Δ2=ωm, 并且忽略高频振荡项得到

    δ˙ai=iJδa3iieiαi2jGijδbj+εpieixtκiδai,δ˙bj=i2iGijeiαiδaiγjδbj.
    (6)

    先讨论相等的光力耦合, 使Gij简化为G11=G21=G1, G12=G22=G2. 这里的G1G2分别表示力学振子b1b2对一个光学腔的有效光力耦合强度. 首先可以得到以下矩阵形式:

    ˙u=Mu+uin,u={δa1δa2δb1δb2}T,uin={εp1eixtεp2eixt00}T,
    (7)

    T代表转置. 系数矩阵为

    M=[κ1iJiG1eiα1iG2eiα1iJκ2iG1eiα2iG2eiα2iG1eiα1iG1eiα2γ10iG2eiα1iG2eiα20γ2].
    (8)

    只有当系数矩阵M所有的本征值都有负实部时, 系统才稳定, 本文中系统一直是稳定的. 具体的稳定性条件可根据Routh-Hurwitz稳态判据[26]给出. 假设(7)式中解的形式为

    δv=δv+eixt+δveixt, v=ai,bj

    最终得出各自的相对涨落值:

    δa1+=(κ2x+Cx)εp1Z(x)+(iJeiαCx)εp2Z(x),δa2+=(κ1x+Cx)εp2Z(x)+(iJeiαCx)εp1Z(x),δb1+=G1γ1x[(Jieiακ2x)εp1Z(x)+(Jeiαiκ1x)εp2Z(x)],δb2+=G2γ2x[(Jieiακ2x)εp1Z(x)+(Jeiαiκ1x)εp2Z(x)],    δv=0.
    (9)

    这里,

    Z(x)=(2iJcosα+κ1x+κ2x)Cx+J2+κ1xκ2x,Cx=G21/γ1x+G22/γ2x,κix=κiix,  γjx=γjix.
    (10)

    由结果可知, 具有物理效应的是相位差α=α1α2. 取简化条件Δ1=Δ2=ωm, κ1=κ2=κ, (3)式简化为

    a1s=κεd1+i(ωmεd1Jεd2)J2+κ2ω2m+2iκωm,a2s=κεd2+i(ωmεd2Jεd1)J2+κ2ω2m+2iκωm.
    (11)

    基于(11)式得到相位:

    α1=arctan(J2+κ2ω2m)(ωmJεd2εd1)2κ2ωmκ(J2+κ2ω2m)+2κωm(ωmJεd2εd1),α2=arctan(J2+κ2ω2m)(ωmJεd1εd2)2κ2ωmκ(J2+κ2ω2m)+2κωm(ωmJεd1εd2).
    (12)

    根据(12)式中的相位, 可以看出: 通过两驱动场振幅的比值εd2/εd2εd1εd1进而达到调控相位差α=α1α2. 例如: εd2/εd2εd1εd1=1时, 相位差α=0;

    εd2εd1=12Jωm[(J2+ω2m+κ2)        ±J2+ω4m+κ4+2J2κ22J2ω2m+2κ2ω2m]

    时, 相位差α=π/2.

    系统的输出场可通过以下标准的输入-输出关系[27]得出

    εoutpi+εinpieixt=2κiδai
    (13)

    其中εinpi=εpi/εpi2κi2κi. 考虑只有单侧探测场时, 可以得出系统散射矩阵元的一般关系式:

    Ta1a1=|εoutp1+/εinp1|,  Ta2a1=|εoutp1+/εinp2|,Ta1a2=|εoutp2+/εinp1|,  Ta2a2=|εoutp2+/εinp2|,Ta1b1=|εoutb1+/εinp1|,  Ta2b1=|εoutb1+/εinp2|,Ta1b2=|εoutb2+/εinp1|,  Ta2b2=|εoutb2+/εinp2|.
    (14)

    上述散射振幅角标以Ta1a2为例, 表示信号从光学腔a1传输到光学腔a2的透射振幅, 下面把Ta1a2简单表示为Ta1a2, 其他同理. 注意(14)式振子输出场表示被振子吸收的探测场部分.

    首先令耗散速率κ1=κ2=κ, 且当系统失谐量x=0时, (14)式中的透射振幅可简化为

    Ta2a1=|2κ(iJeiακC)Z(0)|,Ta1a2=|2κ(iJeiακC)Z(0)|,
    (15)

    其中, 光力协同性C=2jG2j/κγj. 根据(10)式, 得到

    Z(0)=(2iJκcosα+2κ2)C+J2+κ2.
    (16)

    这里重点讨论两个不同方向的透射振幅Ta1a2Ta2a1, 主要由光腔模之间的线性耦合J和光力耦合部分C相互影响决定. 从(15)式可以看出, Ta1a2Ta2a1在相位差α=nπ (n为整数)时相等, 系统表现为互易性, 此时无法实现探测光的单向隔离.

    为了实现系统的隔离性, 要求系统从一侧输入的探测场到另一侧输出时会被抑制, 而不影响反方向传输的探测场. 考虑完美光非互易性情况, 即Ta1a2=1, Ta2a1=0Ta2a1=1,Ta1a2=0, 可得

    α=±π /2+2nπ (n),J/κ=C,J=κ.
    (17)

    图2显示传输振幅随相位差α的周期变化. 透射振幅Ta1a2Ta2a1变化周期为2π, 但Ta1a2Ta2a1具有π的相位差, 且变化趋势相反. 图2表明当相位差改变π后, 系统两端将会呈现出与原来方向相反的光学响应, 如在α=π /2时, 探测场从a2a1能够完美透过, 即Ta2a1=1, 而a1a2被完全抑制, 即Ta1a2=0; 随着相位差变至α=3π /2, 探测场从a2a1被完全抑制, 即Ta2a1=0, 从a1a2则能完美透过, 即Ta1a2=1. 可见, π相位的改变导致透射振幅Ta1a2Ta2a1的完全抑制和完美透射发生反转. 反射振幅Ta1a1Ta2a2曲线的变化周期为π, 二者完全重合, 并在α=nπ (n为整数)时达到极大. 而在α=π /2+nπ (n为整数)时反射部分消失, 而透射振幅Ta1a2最小(或最大), Ta2a1最大(或最小), 此时光非互易现象最明显. 下面讨论选择相位差α = π/2.

    图 2 ${x / \kappa } = 0$时, 传输振幅T随相位差α的变化 (其他参数: ${J/\kappa } = C = 1$)\r\nFig. 2. Transmission amplitudes T at ${x / \kappa } = 0$ are plotted against the phase difference α (Other parameters: ${J/\kappa } = $$  C = 1$).
    图 2  x/κ=0时, 传输振幅T随相位差α的变化 (其他参数: J/κ=C=1)
    Fig. 2.  Transmission amplitudes T at x/κ=0 are plotted against the phase difference α (Other parameters: J/κ=C=1).

    图3讨论了标准光力系统中力学振子对信号的非互易传输所产生的影响, 这时系统为b1模存在而b2模消失(G10,G2=0)的三模光力系统. 当力学振子为一个输入端口时, 系统出现三端口环形器的一些功能[25]. 图3显示的传输振幅随失谐量的变化与文献[1]结果一致, 且系统中光学腔与力学振子的耗散速率对谱线宽度存在影响. 所有传输振幅关于失谐量为0的位置, 即共振频率(x/κ=0)对称, 此时探测场与驱动场之间的拍频与力学振子频率相等. 图3(a)实现对探测场εp1的完全隔离, 因为探测场εp1在共振频率处被力学振子完全吸收, 而未通过反射或透射部分传输出该系统. 总之, 探测光子之间的相消干涉实现了对探测场εp1的完全隔离. 图3(b)实现探测场εp2的完美透射, 因为探测场εp2在共振频率处能够从系统中全部透射出去, 而没有能量反射出来或被力学振子所吸收. 探测场εp1的完全隔离和εp2的完美透射说明标准光力系统具有光非互易性质, 能够实现光的单向隔离性, 有助于实现光隔离器和光开关[28]. 但在远离共振频率时, 探测场的非互易性质会明显减弱, 表现为不同方向的透射振幅逐渐重合, 系统趋于互易. 换言之, 该过程中信号被力学振子吸收的部分变弱而反射部分快速增强. 可见, 标准光力系统只能实现对特定频率(共振频率)的光隔离器和光开关.

    图 3 单个力学振子b1影响下, 不同方向输入场${\varepsilon _{{\text{p}}1}}$(a)和${\varepsilon _{{\text{p}}2}}$(b)的传输振幅T随标准化失谐$x/\kappa $的变化  (其他参数: $\alpha  = {{\text{π }} \mathord{\left/   {\vphantom {{\text{π }} 2}} \right.   } 2}$, ${J \mathord{\left/   {\vphantom {J \kappa }} \right.   } \kappa } = 1$, ${{{\gamma _1}} \mathord{\left/   {\vphantom {{{\gamma _1}} \kappa }} \right.   } \kappa } = 0.25$, ${G_2} = 0$, ${{{G_1}}/ \kappa } = 0.5$)\r\nFig. 3. Transmission amplitude T of input fields ${\varepsilon _{{\text{p}}1}}$(a) and ${\varepsilon _{{\text{p}}2}}$(b) in different directions as a function of normalized detuning $x/\kappa $ for only a single mechanical oscillator b1 (Other parameters: $\alpha  = {{\text{π }}/2}$, ${J/ \kappa } = 1$, ${{{\gamma _1}} / \kappa } = 0.25$, ${G_2} = 0$, ${{{G_1}} / \kappa } = 0.5$)
    图 3  单个力学振子b1影响下, 不同方向输入场εp1(a)和εp2(b)的传输振幅T随标准化失谐x/κ的变化 (其他参数: α=π /π 22, J/Jκκ=1, γ1/γ1κκ=0.25, G2=0, G1/κ=0.5)
    Fig. 3.  Transmission amplitude T of input fields εp1(a) and εp2(b) in different directions as a function of normalized detuning x/κ for only a single mechanical oscillator b1 (Other parameters: α=π /2, J/κ=1, γ1/κ=0.25, G2=0, G1/κ=0.5)

    隔离率是衡量光隔离器等非互易器件性能的主要参数, 因此引入单向隔离率I=(Ta2a1Ta1a2)/(Ta2a1+Ta1a2)表征系统以光腔模a1作为输入端的隔离程度和系统实现光非互易现象的程度[29]. 图4显示标准光力系统(力学振子b1单独作用)在x = 0处单向隔离率I随有效光力耦合强度G1的变化, 发现随着有效光力耦合的出现, 系统出现了光非互易现象, 并在G1/κ=0.5处使隔离率达到最大值, 且G1再增大时隔离率下降. 可见, 恰当地选择有效光力耦合强度可以制作光隔离器.

    图 4  x = 0时, 单向隔离率I 随有效光力耦合强度${G_1}$的变化 (给定的参数: $\alpha  = {{\text{π }}/ 2}$, ${J/ \kappa } = 1$, ${G_2} = 0$, ${{{\gamma _1}}/ \kappa } = $$  0.25$)\r\nFig. 4. Unidirectional isolation rate I at x = 0 versus effective optomechanical coupling strengths ${G_1}$ (The given parameters: $\alpha  = {{\text{π }}/ 2}$, ${J / \kappa } = 1$, ${G_2} = 0$, ${{{\gamma _1}} / \kappa } = 0.25$)
    图 4  x = 0时, 单向隔离率I 随有效光力耦合强度G1的变化 (给定的参数: α=π /2, J/κ=1, G2=0, γ1/κ=0.25)
    Fig. 4.  Unidirectional isolation rate I at x = 0 versus effective optomechanical coupling strengths G1 (The given parameters: α=π /2, J/κ=1, G2=0, γ1/κ=0.25)

    图5显示双腔双光力系统在x = 0处的单向隔离率I随有效光力耦合强度G1G2变化, 发现腔模间耦合强度J/κ=1时, 由(10)式可知, 只有满足总的光力协同性C=J/κ系统才能具备较大的单向隔离率, 如图5红色区域. 当单个力学振子作用时, 只有有效的光力耦合强度G1G2分别靠近κγ1κγ2时, 系统才能达到高隔离率. 在保证隔离程度一定时, 符合条件的有效光力耦合强度的范围与其自身力学振子的耗散速率呈正相关, 如隔离率I ≥ 0.95区域内, 因耗散速率γ2/κ>γ1/κ, 所以相对于力学振子b1来说, b2对光学腔的有效光力耦合强度G2的可选择范围更大, 这一特性使系统拥有更高的容错率.

    图 5  x = 0时, 单向隔离率I随有效光力耦合强度${G_1}$和${G_2}$的变化 (给定的参数: $\alpha  = {{\text{π }}/ 2}$, ${J/\kappa } = 1$, ${{{\gamma _1}}/ \kappa } = 0.25$, ${{{\gamma _2}}/ \kappa } = 9$)\r\nFig. 5. Unidirectional isolation rate I at x = 0 versus the effective optomechanical coupling strengths G1 and G2 (The given parameters: $\alpha  = {{\text{π }}/ 2}$, ${J/ \kappa } = 1$, ${{{\gamma _1}}/\kappa } = 0.25$, ${{{\gamma _2}}/\kappa } = $$  9$).
    图 5  x = 0时, 单向隔离率I随有效光力耦合强度G1G2的变化 (给定的参数: α=π /2, J/κ=1, γ1/κ=0.25, γ2/κ=9)
    Fig. 5.  Unidirectional isolation rate I at x = 0 versus the effective optomechanical coupling strengths G1 and G2 (The given parameters: α=π /2, J/κ=1, γ1/κ=0.25, γ2/κ=9).

    图6讨论了透射振幅T和对应的隔离率I随失谐量x/κ的变化, 图6(a1), (a2)图6(b1), (b2)分别对应图5G2=0(a点和b点)和G1/κ = 0.3 (c点和d点). 注意这里力学振子b1b2是可分辨的, 通过不同的耗散速率体现, 不失一般性地设定力学振子对应的两耗散速率具有不同的数量级, 取γ2>γ1(注意γ2<γ1的情况与γ2>γ1类似; 而γ2=γ1时两力学振子相同, 对系统的影响等价于单个力学振子时的情形).

    图 6 透射振幅T和对应的隔离率I随标准化失谐$x/\kappa $的变化 (其他参数与图5相同) (a1) G2 = 0, G1/κ = 0.5; (a2) G2 = 0, G1/κ = 0.3; (b1) G1/κ = 0.3, G2/κ = 2.4; (b2) G1/κ = 0.3, G2/κ = 3.0\r\nFig. 6. Transmission amplitudes T and the corresponding isolation rate I versus normalized detuning $x/\kappa $ (The given parameters are the same as the ones in Fig. 5): (a1) G1/κ = 0.5; (a2) G1/κ = 0.3; (b1) G2/κ = 2.4; (b2) G2/κ = 3.0.
    图 6  透射振幅T和对应的隔离率I随标准化失谐x/κ的变化 (其他参数与图5相同) (a1) G2 = 0, G1/κ = 0.5; (a2) G2 = 0, G1/κ = 0.3; (b1) G1/κ = 0.3, G2/κ = 2.4; (b2) G1/κ = 0.3, G2/κ = 3.0
    Fig. 6.  Transmission amplitudes T and the corresponding isolation rate I versus normalized detuning x/κ (The given parameters are the same as the ones in Fig. 5): (a1) G1/κ = 0.5; (a2) G1/κ = 0.3; (b1) G2/κ = 2.4; (b2) G2/κ = 3.0.

    为了能够得到更加明显的双峰谱线, 图7讨论透射振幅T和对应的隔离率I随标准化失谐x/κ的变化. 图7(a1)表明力学振子b2单独作用可使系统实现完美光非互易传输, 对应于图5中的e点. 而图7(a2)表明当力学振子b1加入后, 在共振频率处打开了一个反向透射窗口(红实线), 此时系统出现具有明显双峰现象的隔离率曲线. 该结果不仅能隔离相应频率的噪声, 且共振频率处的反向透射振幅达到很高. 相较于理想条件, 即力学振子b1耗散速率为0时, 即γ1/κ=0, 共振频率处的信号能够实现完美的反向透过(图7(b1)). 图7(b2)表明当光力耦合强度从G1/κ=0.3增加至G1/κ=0.8时, 双峰最大隔离率会降低, 同时最大隔离率对应的频率范围也发生了改变. 可见, 通过适当地调控参数, 该系统可以有选择性地实现不同频率的信号、不同程度的反向通过和隔离, 这些结果极大地丰富了一些光学非互易器件的功用性.

    图 7 透射振幅T和对应的隔离率I随标准化失谐$x/\kappa $的变化 (其他参数: $\alpha  = {{\text{π }} / 2}$, ${J /\kappa } = 1$, ${{{\gamma _2}}/ \kappa } = 9$, ${{{G_2}} / \kappa } = 3$) (a1) γ1/κ = 0.01, G1/κ = 0; (a2) γ1/κ = 0.01, G1/κ = 0.3; (b1) γ1 = 0, G1/κ = 0.3; (b2) γ1 = 0, G1/κ = 0.8\r\nFig. 7. Transmission amplitudes T and the corresponding isolation rate I versus normalized detuning $x/\kappa $ (The other parameters are $\alpha  = {{\text{π }}/ 2}$, ${J / \kappa } = 1$, ${{{\gamma _2}}/ \kappa } = 9$, ${{{G_2}} / \kappa } = 3$): (a1) γ1/κ = 0.01, G1/κ = 0; (a2) γ1/κ = 0.01, G1/κ = 0.3; (b1) γ1 = 0, G1/κ = 0.3; (b2) γ1 = 0, G1/κ = 0.8.
    图 7  透射振幅T和对应的隔离率I随标准化失谐x/κ的变化 (其他参数: α=π /2, J/κ=1, γ2/κ=9, G2/κ=3) (a1) γ1/κ = 0.01, G1/κ = 0; (a2) γ1/κ = 0.01, G1/κ = 0.3; (b1) γ1 = 0, G1/κ = 0.3; (b2) γ1 = 0, G1/κ = 0.8
    Fig. 7.  Transmission amplitudes T and the corresponding isolation rate I versus normalized detuning x/κ (The other parameters are α=π /2, J/κ=1, γ2/κ=9, G2/κ=3): (a1) γ1/κ = 0.01, G1/κ = 0; (a2) γ1/κ = 0.01, G1/κ = 0.3; (b1) γ1 = 0, G1/κ = 0.3; (b2) γ1 = 0, G1/κ = 0.8.

    对比图6(a1)图7(a1), 均显示出完美光非互易性, 且力学振子b2作用时的频谱宽度(图7(a1)图7(a2))大于只有力学振子b1作用时的频谱宽度(图6(a1)图6(a2)), 可见频谱宽度与力学振子耗散速率(γ2>γ1)呈正相关[30]. 图6(a1)图6(a2)表明单个力学振子b1作用时, 隔离率在x=0附近随失谐量的变化很敏感, 并随失谐量的增大快速衰减至0; 图6(a1)显示单个力学振子b1作用下系统达到了完美的光非互易性, 但随着光力耦合强度G1G1/κ=0.5(图6(a1))降至G1/κ=0.3(图6(a2)), 光非互易程度减弱.

    图6(b1)图6(b2)显示两力学振子b1b2共同作用下, 系统在共振频率处可以再次达到完美光非互易性(图6(b1)), 并且光非互易范围比图6(a1)还要宽, 但窄于只有力学振子b2作用时的情形(图7(a1)). 此时隔离率谱线可看作是力学振子b1b2单独作用时谱线的 “结合”, 共振频率附近力学振子b1的影响占主导, 远离共振频率处力学振子b2的影响则占主导. 该结论可用于理解图6图7中当γ1越小时, 隔离率谱线的峰或谷越尖锐; 而当γ2越大时, 谱线两边越平缓. 当力学振子b2的光力耦合强度增加至G2/G2κκ=3(图6(b2)), 隔离率曲线在共振频率两侧对称地出现两个峰值, 计算发现隔离率曲线出现双峰须有效光力耦合强度满足如下条件:

    G42G21γ1(γ2γ1)2+G41G22γ2(γ2γ1)2 κ2G22γ41γ2κ2G21γ42γ1>0,  (G1,G20).
    (18)

    为了详细讨论隔离率曲线出现双峰的情况, 图8绘制了隔离率随两力学振子光力耦合强度的变化. 注意图8单峰区和双峰区的分割线与坐标轴无交点, 这正体现出只有两个力学振子共同作用时, 才能出现具有双峰的隔离率谱线. 这是因为两力学振子共同作用的双腔双光力系统与三腔光力系统相比多了一条光力耦合路径, 在此路径的干涉作用下在共振频率处本该抑制的信号变得可以透过, 这样共振频率两端的抑制程度变得更加突出. 由此可见, 通过调整参数在该系统中可有选择地实现两种特定频率光的较大隔离率(两个峰值), 同时有望实现中间共振频率信号的反向通过.

    图 8 隔离率I随有效光力耦合强度${{{G_1}}/\kappa }$和${{{G_2}} / \kappa }$的单峰区及双峰区  (其他参数与图5相同)\r\nFig. 8. Single peak region and double peak region of the isolation rate I versus the effective optomechanical coupling strengths ${{{G_1}} / \kappa }$ and ${{{G_2}} / \kappa }$ (Other parameters are the same as the ones in Fig. 5).
    图 8  隔离率I随有效光力耦合强度G1/κG2/κ的单峰区及双峰区 (其他参数与图5相同)
    Fig. 8.  Single peak region and double peak region of the isolation rate I versus the effective optomechanical coupling strengths G1/κ and G2/κ (Other parameters are the same as the ones in Fig. 5).

    总之, 两力学振子共同作用的双腔双光力系统能够得到独特的隔离率谱线, 是多条路径间量子干涉的结果. 以探测场εp1传输方向为例, 两条光力耦合路径a1b1a2a1b2a2与腔间路径a1a2进行干涉, 当相位差α=π /π 22时, 两种路径之间的相长干涉导致探测场的正向通过, 反之相消干涉会抑制探测场的反向通过. 与双腔光力学系统相比, 通过力学振子b2增加的光力耦合路径a1b2a2不但能使系统实现完美的光非互易传输, 而且还能得到一些新的光非互易特征.

    主要研究了双腔双光力系统的光非互易性质, 首先给出了双腔光力学系统和双腔双光力系统在共振频率处实现完美光非互易性的条件, 然后讨论了相位差α=π /2时系统的光非互易性随有效光力耦合强度和耗散速率的变化, 主要通过透射振幅和隔离率来刻画. 结果发现双腔双光力系统能够得到更加丰富多变的隔离率谱线, 通过两力学振子的共同作用系统不仅可以实现完美光非互易性, 而且隔离率谱线具备每个力学振子单独作用时的特性. 双腔双光力系统不仅可实现对两种特定频率探测场的隔离, 而且还可实现对共振频率处信号的反向传输. 此外, 该系统的这些光非互易特性不仅可以用于量子开关的制备, 而且能广泛应用于量子通信和量子器件等方面.

    [1]

    Tang J F, Hou Z B, Shang J W , Zhu H J, Xiang G Y, Li C F, Guo G C 2020 Phys. Rev. Lett. 124 060502Google Scholar

    [2]

    Konrad T, De Melo F, Tiersch M, Kasztelan C, Aragão A, 2008 Buchleitner A Nat. Phys. 4 99Google Scholar

    [3]

    Aspelmeyer M, Böhm H R, Gyatso T, Jennewein T, Kaltenbaek R, Lindenthal M, Molina-Terriza G, Poppe A, Taraba M, Ursin R, Walther P, Zeilinger A 2003 Science 301 621Google Scholar

    [4]

    杨荣国, 张超霞, 李妮, 张静, 郜江瑞 2019 物理学报 68 094205Google Scholar

    Yang R G, Zhang C X, Li N, Zhang J, Gao J R 2019 Acta Phys. Sin. 68 094205Google Scholar

    [5]

    Liang Y Y, Yang R G, Zhang J, Zhang T C 2023 Opt. Express 31 11775Google Scholar

    [6]

    Zhang K, Wang W, Liu S H, Pan X Z, Du J J, Lou Y B, Yu S, Lü S C, Treps N, Fabre C, Jing J T 2020 Phys. Rev. Lett. 124 090501Google Scholar

    [7]

    郝景晨, 杜培林, 孙恒信, 刘奎, 张静, 杨荣国, 郜江瑞 2024 物理学报 73 074203Google Scholar

    Hao J C, Du P L, Sun H X, Liu K, Zhang J, Yang R G, Gao J R 2024 Acta Phys. Sin. 73 074203Google Scholar

    [8]

    闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 物理学报 61 014206Google Scholar

    Yan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206Google Scholar

    [9]

    Liu K, Cui S Z, Yang R G, Zhang J X, Gao J R 2012 Chin. Phys. Lett. 29 060304Google Scholar

    [10]

    刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞 2020 物理学报 69 124203Google Scholar

    Liu K, Ma L, Su B D, Li J M, Sun H X, Gao J R 2020 Acta Phys. Sin. 69 124203Google Scholar

    [11]

    Yang R G, Zhang J, Klich I, González-Arciniegas C, Pfister O 2020 Phys. Rev. A 101 043832Google Scholar

    [12]

    Du P L, Wang Y, Liu K, Yang R G, Zhang J 2023 Opt. Express 31 479420

    [13]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [14]

    Liu X M, Yang R G, Zhang J, Zhang T C 2023 Opt. Express 31 30005Google Scholar

    [15]

    罗均文, 吴德伟, 苗强, 魏天丽 2020 物理学报 69 054203Google Scholar

    Luo J W, Wu D W, Miao Q, Wei T L 2020 Acta Phys. Sin. 69 054203Google Scholar

    [16]

    Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710Google Scholar

    [17]

    Riedinger R, Wallucks A, Marinkovi´c I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473Google Scholar

    [18]

    Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A, Schwab K C 2015 Science 349 952Google Scholar

    [19]

    Zhang X F, Zou C L, Jiang L, Tang H X 2016 Sci. Adv. 2 e1501286Google Scholar

    [20]

    Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys. Rev. Lett. 129 123601Google Scholar

    [21]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003Google Scholar

    [22]

    Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603Google Scholar

    [23]

    Bai L, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C M 2015 Phys. Rev. Lett. 114 227201Google Scholar

    [24]

    Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M, Nakamura Y 2016 Phys. Rev. Lett. 116 223601Google Scholar

    [25]

    Zhang X F, Zhu N, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123605Google Scholar

    [26]

    Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y, Usami K 2018 Phys. Rev. Lett. 120 133602Google Scholar

    [27]

    Zhu N, Zhang X, Han X, Zou C L, Zhong C, Wang C H, Jiang L, Tang H X 2020 Optica 7 1291Google Scholar

    [28]

    Haigh J A, Nunnenkamp A, Ramsay A J 2021 Phys. Rev. Lett. 127 143601Google Scholar

    [29]

    Yang Z B, Liu X D, Yin X Y, Ming Y, Liu H Y, Yang R C 2021 Phys. Rev. Appl. 15 024042Google Scholar

    [30]

    Yin X Y, Yang Z B, Huang Y M, Wan Q M, Yang R C, Liu H Y 2023 Ann. Phys. 535 2200603Google Scholar

    [31]

    Fan Z Y, Shen R C, Wang Y P, Li J, You J Q 2022 Phys. Rev. A 105 033507Google Scholar

    [32]

    Fan Z Y, Qian H, Li J 2023 Quantum Sci. Technol. 8 015014Google Scholar

    [33]

    Fan Z Y, Qiu L, Gröblacher S, Li J 2023 Laser Photonics Rev. 17 2200866Google Scholar

    [34]

    Rueda A, Hease W, Barzanjeh S, Fink J M 2019 npj Quantum Inf. 5 108Google Scholar

    [35]

    Hease W, Rueda A, Sahu R, Wulf M, Arnold G, Schwefel H G L, Fink J M 2020 PRX Quantum 1 020315Google Scholar

    [36]

    Andersen U L, Gehring T, Marquardt C, Leuchs G 2016 Phys. Scr. 91 053001Google Scholar

    [37]

    Sahu R, Qiu L, Hease W, Arnold G, Minoguchi Y, Rabl P, Fink J M 2023 Science 380 718Google Scholar

    [38]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601Google Scholar

    [39]

    Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Express 12 070101Google Scholar

    [40]

    Heyroth F, Hauser C, Trempler P, Geyer P, Syrowatka F, Dreyer R, Ebbinghaus S G, Woltersdorf G, Schmidt G 2019 Phys. Rev. Appl. 12 054031Google Scholar

    [41]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314Google Scholar

    [42]

    Plenio M B 2005 Phys. Rev. Lett. 95 090503Google Scholar

    [43]

    Tan H T, Deng W W, Li G X 2017 Phys. Rev. A 95 053842Google Scholar

    [44]

    Luo Y X, Cong L J, Zheng Z G, Liu H Y, Ming Y, Yang R C 2023 Opt. Express 31 34764Google Scholar

  • 图 1  (a), (b) OMM系统示意图. YIG晶体中的磁振子模式m耦合到微波腔模a并且通过磁致伸缩引起振动声子b耦合到光学腔模c. 图(b)中蓝色(红色)线表示参量下转换(分束器)相互作用; (c)模型采用的模式频率和带宽. 当光学腔模与驱动激光场的反斯托克斯边带(蓝色)在频率为(ωl+ωb)处共振, 并且磁子模和微波腔模同时与微波驱动场的斯托克斯边带(红色)在频率为(ω0ωb)处共振, 可以建立微波-声子以及光-磁子之间的稳态纠缠EabEcm

    Fig. 1.  (a), (b) OMM system scheme. A magnon mode m in a YIG crystal couples to a microwave cavity mode a and to an optical cavity mode c via the mechanical vibration b induced by the magnetostriction. The blue (red) line in Figure (b) denotes the effective parametric down-conversion (beam-splitter) interaction; (c) mode frequency and bandwidth used adopted in the protocol. When the optical cavity is resonant with the (blue) anti-Stokes sideband of the driving laser at frequency (ω0ωb), and the magnon and microwave cavity modes are resonant with the (red) Stokes sideband of the microwave drive field at frequency (ωl+ωb), microwave-mechanics entanglement Eab and magnon-optics entanglement Ecm can be generated at steady state.

    图 2  稳态纠缠随磁子模式和微波腔模式有效失谐量变化密度图 (a)微波-声子纠缠Eab; (b)光-磁纠缠Ecm

    Fig. 2.  Density plot of steady-state entanglement versus effective detunings Δa and ˜Δm: (a) Microwave-mechanics entanglement Eab; (b) magnon-optics entanglement Ecm.

    图 3  微波-声子, 光-磁以及微波-光纠缠随压缩参数r的变化

    Fig. 3.  Stationary microwave-mechanics entanglement Eab, magnon-optics entanglement Ecm and microwave-optics entanglement Eac versus squeezing parameter r.

    图 4  光-磁和微波-声子之间纠缠随有效耦合强度变化 (a)有效光力耦合强度Gc; (b)有效磁力耦合强度Gm; (c)微波-磁子耦合强度gam

    Fig. 4.  Stationary magnon-optics entanglement Ecm and microwave-mechanics entanglement Eab versus effective coupling strength: (a) The effective optomechanical coupling strength Gc; (b) the effective magno-mechanical coupling strength Gm; (c) the microwave-magnon coupling rate gam.

    图 5  微波-声子以及光-磁之间纠缠随不同模式耗散率变化 (a) 微波腔模耗散率κa; (b) 磁振子模耗散率κm; (c) 光学腔模耗散率κc

    Fig. 5.  Stationary microwave-mechanics entanglement Eab and magnon-optics entanglement Ecm versus dissipation rates: (a) Microwave cavity mode dissipation rate κa; (b) magnon mode dissipation rate κm; (c) optical cavity mode dissipation rate κc.

    图 6  微波-声子以及光-磁之间纠缠 (a) 随温度T变化; (b) 随机械振子耗散率γb变化

    Fig. 6.  Stationary microwave-mechanics entanglement Eab and magnon-optics entanglement Ecm versus: (a) Temperature T; (b) mechanical damping rate γb.

  • [1]

    Tang J F, Hou Z B, Shang J W , Zhu H J, Xiang G Y, Li C F, Guo G C 2020 Phys. Rev. Lett. 124 060502Google Scholar

    [2]

    Konrad T, De Melo F, Tiersch M, Kasztelan C, Aragão A, 2008 Buchleitner A Nat. Phys. 4 99Google Scholar

    [3]

    Aspelmeyer M, Böhm H R, Gyatso T, Jennewein T, Kaltenbaek R, Lindenthal M, Molina-Terriza G, Poppe A, Taraba M, Ursin R, Walther P, Zeilinger A 2003 Science 301 621Google Scholar

    [4]

    杨荣国, 张超霞, 李妮, 张静, 郜江瑞 2019 物理学报 68 094205Google Scholar

    Yang R G, Zhang C X, Li N, Zhang J, Gao J R 2019 Acta Phys. Sin. 68 094205Google Scholar

    [5]

    Liang Y Y, Yang R G, Zhang J, Zhang T C 2023 Opt. Express 31 11775Google Scholar

    [6]

    Zhang K, Wang W, Liu S H, Pan X Z, Du J J, Lou Y B, Yu S, Lü S C, Treps N, Fabre C, Jing J T 2020 Phys. Rev. Lett. 124 090501Google Scholar

    [7]

    郝景晨, 杜培林, 孙恒信, 刘奎, 张静, 杨荣国, 郜江瑞 2024 物理学报 73 074203Google Scholar

    Hao J C, Du P L, Sun H X, Liu K, Zhang J, Yang R G, Gao J R 2024 Acta Phys. Sin. 73 074203Google Scholar

    [8]

    闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 物理学报 61 014206Google Scholar

    Yan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206Google Scholar

    [9]

    Liu K, Cui S Z, Yang R G, Zhang J X, Gao J R 2012 Chin. Phys. Lett. 29 060304Google Scholar

    [10]

    刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞 2020 物理学报 69 124203Google Scholar

    Liu K, Ma L, Su B D, Li J M, Sun H X, Gao J R 2020 Acta Phys. Sin. 69 124203Google Scholar

    [11]

    Yang R G, Zhang J, Klich I, González-Arciniegas C, Pfister O 2020 Phys. Rev. A 101 043832Google Scholar

    [12]

    Du P L, Wang Y, Liu K, Yang R G, Zhang J 2023 Opt. Express 31 479420

    [13]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [14]

    Liu X M, Yang R G, Zhang J, Zhang T C 2023 Opt. Express 31 30005Google Scholar

    [15]

    罗均文, 吴德伟, 苗强, 魏天丽 2020 物理学报 69 054203Google Scholar

    Luo J W, Wu D W, Miao Q, Wei T L 2020 Acta Phys. Sin. 69 054203Google Scholar

    [16]

    Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710Google Scholar

    [17]

    Riedinger R, Wallucks A, Marinkovi´c I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473Google Scholar

    [18]

    Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A, Schwab K C 2015 Science 349 952Google Scholar

    [19]

    Zhang X F, Zou C L, Jiang L, Tang H X 2016 Sci. Adv. 2 e1501286Google Scholar

    [20]

    Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys. Rev. Lett. 129 123601Google Scholar

    [21]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003Google Scholar

    [22]

    Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603Google Scholar

    [23]

    Bai L, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C M 2015 Phys. Rev. Lett. 114 227201Google Scholar

    [24]

    Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M, Nakamura Y 2016 Phys. Rev. Lett. 116 223601Google Scholar

    [25]

    Zhang X F, Zhu N, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123605Google Scholar

    [26]

    Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y, Usami K 2018 Phys. Rev. Lett. 120 133602Google Scholar

    [27]

    Zhu N, Zhang X, Han X, Zou C L, Zhong C, Wang C H, Jiang L, Tang H X 2020 Optica 7 1291Google Scholar

    [28]

    Haigh J A, Nunnenkamp A, Ramsay A J 2021 Phys. Rev. Lett. 127 143601Google Scholar

    [29]

    Yang Z B, Liu X D, Yin X Y, Ming Y, Liu H Y, Yang R C 2021 Phys. Rev. Appl. 15 024042Google Scholar

    [30]

    Yin X Y, Yang Z B, Huang Y M, Wan Q M, Yang R C, Liu H Y 2023 Ann. Phys. 535 2200603Google Scholar

    [31]

    Fan Z Y, Shen R C, Wang Y P, Li J, You J Q 2022 Phys. Rev. A 105 033507Google Scholar

    [32]

    Fan Z Y, Qian H, Li J 2023 Quantum Sci. Technol. 8 015014Google Scholar

    [33]

    Fan Z Y, Qiu L, Gröblacher S, Li J 2023 Laser Photonics Rev. 17 2200866Google Scholar

    [34]

    Rueda A, Hease W, Barzanjeh S, Fink J M 2019 npj Quantum Inf. 5 108Google Scholar

    [35]

    Hease W, Rueda A, Sahu R, Wulf M, Arnold G, Schwefel H G L, Fink J M 2020 PRX Quantum 1 020315Google Scholar

    [36]

    Andersen U L, Gehring T, Marquardt C, Leuchs G 2016 Phys. Scr. 91 053001Google Scholar

    [37]

    Sahu R, Qiu L, Hease W, Arnold G, Minoguchi Y, Rabl P, Fink J M 2023 Science 380 718Google Scholar

    [38]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601Google Scholar

    [39]

    Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Express 12 070101Google Scholar

    [40]

    Heyroth F, Hauser C, Trempler P, Geyer P, Syrowatka F, Dreyer R, Ebbinghaus S G, Woltersdorf G, Schmidt G 2019 Phys. Rev. Appl. 12 054031Google Scholar

    [41]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314Google Scholar

    [42]

    Plenio M B 2005 Phys. Rev. Lett. 95 090503Google Scholar

    [43]

    Tan H T, Deng W W, Li G X 2017 Phys. Rev. A 95 053842Google Scholar

    [44]

    Luo Y X, Cong L J, Zheng Z G, Liu H Y, Ming Y, Yang R C 2023 Opt. Express 31 34764Google Scholar

  • [1] 史佳佳, 刘晓敏, 张冲, 徐明慧, 梁芸芸, 张静. 相干反馈光磁力系统中光-微波纠缠与光磁纠缠的增强. 物理学报, 2025, 74(9): . doi: 10.7498/aps.74.20241801
    [2] 郝景晨, 杜培林, 孙恒信, 刘奎, 张静, 杨荣国, 郜江瑞. 双端腔Ⅱ类倍频产生四组份纠缠光场. 物理学报, 2024, 73(7): 074203. doi: 10.7498/aps.73.20231630
    [3] 陈锋, 任刚. 基于纠缠态表象的双模耦合谐振子量子特性分析. 物理学报, 2024, 73(23): 230302. doi: 10.7498/aps.73.20241303
    [4] 徐笑吟, 刘胜帅, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2022, 71(5): 050301. doi: 10.7498/aps.71.20211324
    [5] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211324
    [6] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控. 物理学报, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [7] 王灿灿. 量子纠缠与宇宙学弗里德曼方程. 物理学报, 2018, 67(17): 179501. doi: 10.7498/aps.67.20180813
    [8] 黄馨瑶, 项玉, 孙风潇, 何琼毅, 龚旗煌. 平面自旋压缩态的产生与原子干涉的机理. 物理学报, 2015, 64(16): 160304. doi: 10.7498/aps.64.160304
    [9] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [10] 廖庆洪, 刘晔. 陆续通过一个双模腔的两原子之间纠缠的突然产生和调控. 物理学报, 2012, 61(15): 150301. doi: 10.7498/aps.61.150301
    [11] 徐岩, 樊炜, 陈兵, 李照鑫. S=1旋量Bose-Einstein凝聚中制备双模最大纠缠态方案. 物理学报, 2011, 60(6): 060305. doi: 10.7498/aps.60.060305
    [12] 王淑静, 马善钧. 由光分束器和起偏器混合产生的三模纠缠态表象. 物理学报, 2011, 60(3): 030302. doi: 10.7498/aps.60.030302
    [13] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [14] 刘小娟, 刘一曼, 周并举. 原子与双模相干强场依赖强度耦合多光子过程中纠缠量度与制备. 物理学报, 2010, 59(12): 8518-8525. doi: 10.7498/aps.59.8518
    [15] 熊恒娜, 郭 红, 江 健, 陈 俊, 唐丽艳. 原子间纠缠和光场模间纠缠的对应关系. 物理学报, 2006, 55(6): 2720-2725. doi: 10.7498/aps.55.2720
    [16] 张 茜, 李福利, 李宏荣. 基于双模压缩信道的双模高斯态量子隐形传态. 物理学报, 2006, 55(5): 2275-2280. doi: 10.7498/aps.55.2275
    [17] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠. 物理学报, 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [18] 周青春, 祝世宁. Λ型三能级原子与数态单模光场互作用系统的纠缠特性. 物理学报, 2005, 54(5): 2043-2048. doi: 10.7498/aps.54.2043
    [19] 黄燕霞, 赵朋义, 黄熙, 詹明生. 压缩真空场与原子非线性作用过程中的纠缠与消纠缠. 物理学报, 2004, 53(1): 75-81. doi: 10.7498/aps.53.75
    [20] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干. 物理学报, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
计量
  • 文章访问数:  1040
  • PDF下载量:  73
出版历程
  • 收稿日期:  2024-12-01
  • 修回日期:  2024-12-26
  • 上网日期:  2025-01-02
  • 刊出日期:  2025-03-05

/

返回文章
返回