搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波-声子与光-磁纠缠态的产生

徐明慧 刘晓敏 史佳佳 张冲 张静 杨荣国 郜江瑞

引用本文:
Citation:

微波-声子与光-磁纠缠态的产生

徐明慧, 刘晓敏, 史佳佳, 张冲, 张静, 杨荣国, 郜江瑞

Generation of microwave-mechanics and magnon-optics entangled states

Xu Ming-Hui, Liu Xiao-Min, Shi Jia-Jia, Zhang chong, Zhang Jing, Yang Rong-Guo, Gao Jiang-Rui
PDF
导出引用
  • 量子纠缠是量子计算和量子通信网络的核心资源。本文提出了一种在腔光磁力系统中同时获得微波-声子和光-磁纠缠的理论模型。该模型基于磁振子的混合量子系统,注入由超导电光装置产生的光-微波纠缠光束作为内腔场,并且用蓝失谐微波场激发磁振子模式产生磁振子-声子纠缠。通过光力分束器及微波-磁子状态交换相互作用转移纠缠,最终可以获得微波-声子和光-磁纠缠。理论上从系统哈密顿量和量子郎之万方程出发,得到漂移矩阵A,由漂移矩阵的负本征值保证文章计算的纠缠处于稳定状态。再利用对数负性分析研究了系统中量子纠缠的特性与相关参数的依赖关系。研究表明该系统可同时获得微波-声子以及光-磁之间稳态纠缠,并且在系统中直接注入纠缠的微波与光可以显著提升纠缠对温度的鲁棒性。该研究将在量子网络和混合量子系统的量子信息处理方面奠定基础。
    Quantum entanglement is a key resource for performing quantum computing and building quantum communication networks. By injecting a microwave-optical dual-mode entanglement field into the system, as well as pumping the optical and microwave cavities, and by appropriately choosing the detuning relation between the pumping field and the modes, the paper shows that microwave-mechanics entanglement Eaband magnon-optics entanglement Ecmcan be generated simultaneously in the cavity opto-magnomechanics system, and the entanglement can be in a steady state. Specifically, the model is based on a hybrid quantum system of magnons, where a microwave-light entanglement generated by an optically pulsed superconducting electro-optical device through spontaneous parametric down-conversion process is injected as the intracavity field, and a blue-detuned microwave field is used to excite the magnon modes to produce magnon-phonon entanglement. By interacting with an optomechanical beam splitter and microwave-magnon state-swap interaction, steady microwave-mechanics entanglement Eab and magnon-optics entanglement Ecm are successfully realized. The entanglement Eaband Ecm in the system is analyzed using the logarithmic negativity. This paper mainly investigates the effect of several parameters of the system, such as environment temperature, coupling strength and dissipation rate, on the degree of entanglement. In particular, the entanglement Eab and Ecm generated in this system can exist both simultaneously and individually. Especially when gam=0, the entanglement Eab and Ecm still exist. Moreover, directly injecting entangled microwave-light into the system can significantly enhance the robustness of the entanglement against temperature, which will have broad application prospects in quantum information processing in quantum networks and hybrid quantum systems. Notably, the entanglement Eab and Ecm exist even at a temperature of 1.3K. The implications of our research has potential value for applications in the field of quantum information processing and quantum networks.
  • [1]

    Tang J F, Hou Z B, Shang J W, Zhu H J, Xiang G Y, Li C F, Guo G C 2020 Phys. Rev. Lett. 124060502

    [2]

    Konrad T, De Melo F, Tiersch M, Kasztelan C, Aragão A, 2008 Buchleitner A Nature physics 4 99

    [3]

    Aspelmeyer M, Böhm H R, Gyatso T, Jennewein T, Kaltenbaek R, Lindenthal M, Molina-Terriza G, Poppe A, Taraba M, Ursin R, Walther P, Zeilinger A 2003 Science 301 621

    [4]

    Yang R G, Zhang C X, Li N, Zhang J, Gao J R 2019 Acta Phys. Sin. 68 094205 (in Chinese) [杨荣国, 张超霞, 李妮, 张静, 郜江瑞 2019 物理学报 68 094205]

    [5]

    Liang Y Y, Yang R G, Zhang J, Zhang T C 2023 Opt. Express 31 11775

    [6]

    Zhang K, Wang W, Liu S H, Pan X Z, Du J J, Lou Y B, Yu S, Lv S C, Treps N, Fabre C, Jing J T 2020 Phys. Rev. Lett. 124 090501

    [7]

    Hao J C, Du P L, Sun H X, Liu K, Zhang J, Yang R G, Gao J R 2024 Acta Phys. Sin. 73 074203 (in Chinese) [郝景晨, 杜培林, 孙恒信, 刘奎, 张静, 杨荣国, 郜江瑞 2024 物理学报 73 074203]

    [8]

    Yan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206 (in Chinese)

    [9]

    [闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 物理学报 61 074203]

    [10]

    Liu K, Cui S Z, Yang R G, Zhang J X, Gao J R 2012 Chinese Physics Letters 29 060304

    [11]

    Liu K, Ma L, Su B D, Li J M, Sun H X, Gao J R 2020 Acta Phys. Sin. 69 124203 (in Chinese) [刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞 2024 物理学报 29 074203]

    [12]

    Yang R G, Zhang J, Klich I, González-Arciniegas C, Pfister O 2020 Phys.Rev.A 101 043832

    [13]

    Du P L, Wang Y, Liu K, Yang R G, Zhang J 2023 Opt. Express 31 7535

    [14]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [15]

    Liu X M, Yang R G, Zhang J, Zhang T C 2023 Opt. Express 31 30005

    [16]

    Luo J W, Wu D W, Miao Q, Wei T L 2020 Acta Phys. Sin. 69 054203 (in Chinese) [罗均文,吴德伟,苗强,魏天丽 2020物理学报 69 054203]

    [17]

    Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710

    [18]

    Riedinger R, Wallucks A, Marinkovixc I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473

    [19]

    Wollman E E,Lei C U,Weinstein A J,Suh J, Kronwald A, Marquardt F, Clerk A A, Schwab K C 2015 Science 349 952

    [20]
    [21]

    Zhang X F, Zou C L, Jiang L, Tang H X 2016 Sci. Adv. 2 e1501286

    [22]

    Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys.Rev. Lett. 129 123601

    [23]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M,Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003

    [24]

    Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603

    [25]

    Bai L, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C M 2015 Phys. Rev. Lett. 114 227201

    [26]

    Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M, Nakamura Y 2016 Phys. Rev. Lett. 116 223601

    [27]

    Zhang X F, Zhu N, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123605

    [28]

    Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y, Usami K 2018 Phys. Rev. Lett. 120 133602

    [29]

    Zhu N, Zhang X, Han X, Zou C L, Zhong C, Wang C H, Jiang L, Tang H X 2020 Optica 7 1291

    [30]

    Haigh J A, Nunnenkamp A, Ramsay A J 2021 Phys. Rev. Lett. 127 143601

    [31]

    Yang Z B, Liu X D, Yin X Y, Ming Y, Liu H Y, Yang R C 2021 Phys. Rev. Applied 15 024042

    [32]

    Yin X Y, Yang Z B, Huang Y M, Wan Q M, Yang R C, Liu H Y 2023 Annalen der Physik 535 2200603

    [33]

    Fan Z Y, Shen R C, Wang Y P, Li J, You J Q 2022 Phys. Rev. A 105 033507

    [34]

    Fan Z Y, Qian H, Li J 2023 Quantum Sci. Technol. 8 015014

    [35]

    Fan Z Y, Qiu L, Gröblacher S, Li J 2023 Laser Photonics Rev. 17 2200866

    [36]

    Rueda A, Hease W, Barzanjeh S, Fink J M 2019 npj Quantum Inf. 5 108

    [37]

    Hease W, Rueda A, Sahu R, Wulf M, Arnold G, Schwefel H G L, Fink J M 2020 PRX Quantum 1 020315

    [38]

    Andersen U L, Gehring T, Marquardt C, Leuchs G 2016 Phys. Scr 91 053001

    [39]

    Sahu R, Qiu L, Hease W, Arnold G, Minoguchi Y, Rabl P, Fink J M 2023 Science 380 718

    [40]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601

    [41]

    Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Express 12 070101

    [42]

    Heyroth F, Hauser C, Trempler P, Geyer P, Syrowatka F, Dreyer R, Ebbinghaus S G, Woltersdorf G, Schmidt G 2019 Phys. Rev. Appl. 12 054031

    [43]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

    [44]

    Plenio M B 2005 Phys. Rev. Lett. 95 090503

    [45]

    Tan H T, Deng W W, Li G X 2017 Phys.Rev.A 95 053842

    [46]

    Luo Y X, Cong L J, Zheng Z G, Liu H Y, Ming Y, Yang R C 2023 Opt. Express 31 34764

  • [1] 郝景晨, 杜培林, 孙恒信, 刘奎, 张静, 杨荣国, 郜江瑞. 双端腔Ⅱ类倍频产生四组份纠缠光场. 物理学报, doi: 10.7498/aps.73.20231630
    [2] 陈锋, 任刚. 基于纠缠态表象的双模耦合谐振子量子特性分析. 物理学报, doi: 10.7498/aps.73.20241303
    [3] 徐笑吟, 刘胜帅, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, doi: 10.7498/aps.71.20211324
    [4] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, doi: 10.7498/aps.70.20211324
    [5] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控. 物理学报, doi: 10.7498/aps.68.20181837
    [6] 王灿灿. 量子纠缠与宇宙学弗里德曼方程. 物理学报, doi: 10.7498/aps.67.20180813
    [7] 黄馨瑶, 项玉, 孙风潇, 何琼毅, 龚旗煌. 平面自旋压缩态的产生与原子干涉的机理. 物理学报, doi: 10.7498/aps.64.160304
    [8] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, doi: 10.7498/aps.61.210502
    [9] 廖庆洪, 刘晔. 陆续通过一个双模腔的两原子之间纠缠的突然产生和调控. 物理学报, doi: 10.7498/aps.61.150301
    [10] 刘圣鑫, 李莎莎, 孔祥木. Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响. 物理学报, doi: 10.7498/aps.60.030303
    [11] 徐岩, 樊炜, 陈兵, 李照鑫. S=1旋量Bose-Einstein凝聚中制备双模最大纠缠态方案. 物理学报, doi: 10.7498/aps.60.060305
    [12] 王淑静, 马善钧. 由光分束器和起偏器混合产生的三模纠缠态表象. 物理学报, doi: 10.7498/aps.60.030302
    [13] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, doi: 10.7498/aps.59.2193
    [14] 刘小娟, 刘一曼, 周并举. 原子与双模相干强场依赖强度耦合多光子过程中纠缠量度与制备. 物理学报, doi: 10.7498/aps.59.8518
    [15] 熊恒娜, 郭 红, 江 健, 陈 俊, 唐丽艳. 原子间纠缠和光场模间纠缠的对应关系. 物理学报, doi: 10.7498/aps.55.2720
    [16] 张 茜, 李福利, 李宏荣. 基于双模压缩信道的双模高斯态量子隐形传态. 物理学报, doi: 10.7498/aps.55.2275
    [17] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠. 物理学报, doi: 10.7498/aps.55.4631
    [18] 周青春, 祝世宁. Λ型三能级原子与数态单模光场互作用系统的纠缠特性. 物理学报, doi: 10.7498/aps.54.2043
    [19] 黄燕霞, 赵朋义, 黄熙, 詹明生. 压缩真空场与原子非线性作用过程中的纠缠与消纠缠. 物理学报, doi: 10.7498/aps.53.75
    [20] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干. 物理学报, doi: 10.7498/aps.51.1989
计量
  • 文章访问数:  139
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-02

/

返回文章
返回