搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响

刘圣鑫 李莎莎 孔祥木

引用本文:
Citation:

Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响

刘圣鑫, 李莎莎, 孔祥木

The effect of Dzyaloshinskii-Moriya interaction on entanglement in one-dimensional XY spin model

Liu Sheng-Xin, Li Sha-Sha, Kong Xiang-Mu
PDF
导出引用
  • 研究了Dzyaloshinskii-Moriya(DM)相互作用对混合自旋(1/2,3/2)XY链以及自旋为1的XY链热纠缠的影响.通过计算两粒子之间的纠缠,发现它不仅能够增强纠缠,而且能使两粒子之间的纠缠度达到一稳定值;当温度较高时,要使热纠缠达到稳定值需要更强的这种相互作用.在相同的条件下,自旋s=1的两粒子之间的纠缠要小于混合自旋两粒子之间的纠缠.粒子之间的交换耦合相互作用有助于加强粒子之间的热纠缠,因此可以与DM相互作用一起调节纠缠度.当交换耦合相互作用比
    The effects of Dzyaloshinskii-Moriya (DM) interaction on the thermal entanglement of mixed-spin XY chain (1/2,3/2) and spin 1 XY chain are investigated through negativity. By calculating the entanglement between two particles, it was found that the DM interaction can not only increase the entanglement, but also make the entanglement of the particles reach a stationary value. The higher the temperature, the greater the DM interaction is required to make the thermal entanglement arrive at this stationary value. Under the same condition, the entanglement between two spin 1 particles is less than that between mixed-spin. The exchange-coupling interactions between the spins are helpful to strengthen the thermal entanglement, hence the exchange-coupling can be used to modulate the entanglement along with the DM interaction. When the exchange-coupling interaction is small, one can enlarge the DM interaction to increase the entanglement, whereas, when the DM interaction is small, one can increase the thermal entanglement through increasing the exchange-coupling interaction.
    • 基金项目: 国家自然科学基金(批准号:10775088)资助的课题.
    [1]

    Bennett C H, Brassaro G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [2]

    Cheng W W, Huang Y X, Liu T K, Li H 2007 Chin. Phys. 16 38

    [3]

    Shan C J, Man Z X, Xia Y J, Liu T K 2007 Int. J. Quant. Inform 5 335

    [4]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [5]

    Verstraete F, Martn-Delgado M A, Cirac J I 2004 Phys. Rev. Lett. 92 087201

    [6]

    Nielsen M A 1998 Ph.D. thesis, University of New Mexico, quant-ph/0011036

    [7]

    Hui X Q, Chen W X, Liu Q, Yue R H 2006 Acta Phys. Sin. 55 3026(in Chinese)[惠小强、陈文学、刘 起、岳瑞宏 2006 物理学报55 3026]

    [8]

    Wang X G 2002 Phys. Rev. A 66 034302

    [9]

    Arnesen M C, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901

    [10]

    William K W 1998 Phys. Rev. Lett. 80 2245

    [11]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

    [12]

    Schliemann J 2003 Phys. Rev. A 68 012309

    [13]

    Qin M, Tao Y J, Hu M L, Tian D P 2008 Science in China G 38 744

    [14]

    Wang F, Jia H H,Zhang H L,Zhang X A. Chang S L 2009 Science in China G 39 1052

    [15]

    Wang X G 2001 Phys. Lett. A 281 101

    [16]

    Zhang G F 2007Phys. Rev. A 75 034304

    [17]

    Gurkan Z N, Pashaev O K 2007 Preprint quant-ph 07050679

    [18]

    Ma X S, Zhang J Y, Cong H T, Wang A M 2009 Science in China G 39 181

    [19]

    Cai Z, Lu W B, Liu Y J 2008 Acta Phys. Sin. 57 7267 (in Chinese)[蔡 卓、陆文彬、 刘拥军 2008 物理学报 57 7267]

    [20]

    Shan C J, Cheng W W, Liu T K, Huang Y X, Li H 2008 Acta Phys. Sin. 57 2687(in Chinese) [单传家、程维文、刘堂昆、黄燕霞、李 宏 2008 物理学报 57 2687]

    [21]

    Wang Y H, Xia Y J 2009 Acta Phys. Sin. 58 7479 (in Chinese)[王彦辉、夏云杰 2009 物理学报 58 7479]

  • [1]

    Bennett C H, Brassaro G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [2]

    Cheng W W, Huang Y X, Liu T K, Li H 2007 Chin. Phys. 16 38

    [3]

    Shan C J, Man Z X, Xia Y J, Liu T K 2007 Int. J. Quant. Inform 5 335

    [4]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [5]

    Verstraete F, Martn-Delgado M A, Cirac J I 2004 Phys. Rev. Lett. 92 087201

    [6]

    Nielsen M A 1998 Ph.D. thesis, University of New Mexico, quant-ph/0011036

    [7]

    Hui X Q, Chen W X, Liu Q, Yue R H 2006 Acta Phys. Sin. 55 3026(in Chinese)[惠小强、陈文学、刘 起、岳瑞宏 2006 物理学报55 3026]

    [8]

    Wang X G 2002 Phys. Rev. A 66 034302

    [9]

    Arnesen M C, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901

    [10]

    William K W 1998 Phys. Rev. Lett. 80 2245

    [11]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

    [12]

    Schliemann J 2003 Phys. Rev. A 68 012309

    [13]

    Qin M, Tao Y J, Hu M L, Tian D P 2008 Science in China G 38 744

    [14]

    Wang F, Jia H H,Zhang H L,Zhang X A. Chang S L 2009 Science in China G 39 1052

    [15]

    Wang X G 2001 Phys. Lett. A 281 101

    [16]

    Zhang G F 2007Phys. Rev. A 75 034304

    [17]

    Gurkan Z N, Pashaev O K 2007 Preprint quant-ph 07050679

    [18]

    Ma X S, Zhang J Y, Cong H T, Wang A M 2009 Science in China G 39 181

    [19]

    Cai Z, Lu W B, Liu Y J 2008 Acta Phys. Sin. 57 7267 (in Chinese)[蔡 卓、陆文彬、 刘拥军 2008 物理学报 57 7267]

    [20]

    Shan C J, Cheng W W, Liu T K, Huang Y X, Li H 2008 Acta Phys. Sin. 57 2687(in Chinese) [单传家、程维文、刘堂昆、黄燕霞、李 宏 2008 物理学报 57 2687]

    [21]

    Wang Y H, Xia Y J 2009 Acta Phys. Sin. 58 7479 (in Chinese)[王彦辉、夏云杰 2009 物理学报 58 7479]

  • [1] 代雪峰, 贡同. 铁磁性电极条件下T型双量子点结构中马约拉纳束缚态的解耦现象. 物理学报, 2024, 73(5): 057301. doi: 10.7498/aps.73.20231434
    [2] 李靖, 刘运全. 基于相对论自由电子的量子物理. 物理学报, 2022, 71(23): 233302. doi: 10.7498/aps.71.20221289
    [3] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计. 物理学报, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [4] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210907
    [5] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211324
    [6] 王鹏, 潘凤春, 郭晶晶, 李婷婷, 王旭明. 用双稳态势场模型研究观点转变的驱动-响应关系. 物理学报, 2020, 69(6): 060501. doi: 10.7498/aps.69.20191516
计量
  • 文章访问数:  9247
  • PDF下载量:  858
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-04
  • 修回日期:  2010-06-25
  • 刊出日期:  2011-03-15

/

返回文章
返回