搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纠缠态表象的双模耦合谐振子量子特性分析

陈锋 任刚

引用本文:
Citation:

基于纠缠态表象的双模耦合谐振子量子特性分析

陈锋, 任刚

Analysis of quantum properties of two-mode coupled Harmonic Oscillator based on the entangled state representation

Chen Feng, Ren Gang
PDF
导出引用
  • 量子谐振子模型在量子光学和量子信息具有十分重要作用,一直以来是相关领域研究的热点问题之一.在单模谐振子和双模纠缠态表象的基础上,构造了一种新的双模耦合谐振子模型.与以往文献中的双模耦合谐振子不同,本文提出的模型不仅仅是具有新耦合系数的坐标和动量两个耦合项,而且其能量本征值和波函数不需要消除耦合项便可直接求解,这大大简化了有关的量子计算.此外,进一步分析了双模真空态在此谐振子作用下,输出量子态的非经典特性,如正交压缩性质、相空间Q函数、粒子数空间分布和量子纠缠等.研究表明,此双模耦合谐振子对输入真空态具有很强的耗散作用.输出光场不仅呈现超泊松分布和强关联的特性,而且光子较高的量子纠缠度.因此,这种双模耦合谐振子是成为实现连续变量量子纠缠态的典型方案之一。
    The quantum oscillator model plays a significant role in quantum optics and quantum information and has been one of the hot research topics in related fields. Inspired by the single-mode linear harmonic oscillator and the two-mode entangled state representation, this paper constructs a two-mode coupled harmonic oscillator. Different from the quantum transformation method used in previous literature, this paper directly uses the entangled state representation to solve its energy eigenvalues ​​and eigenfunctions easily. Compared with the one-mode harmonic oscillator, the energy eigenvalues ​​and eigenfunctions of this two-mode coupled harmonic oscillator are continuous.
    Using the matrix theory of quantum operators, we derive the transformation and inverse transformation of the time evolution operator corresponding to the two-mode coupled harmonic oscillator. In addition, using the entangled state representation, the specific form of the time evolution of the two-mode vacuum state under the action of the oscillator is obtained. Through the analysis of quantum fidelity, it is found that the fidelity of the output quantum state decreases with the increase of the oscillator frequency, and the fidelity eventually tends to zero with the increase of time.
    When analyzing the orthogonal squeezing properties of the output quantum state, this type of two-mode oscillator does not have the orthogonal squeezing effect, but instead has a strong quantum dissipation effect. This conclusion is further verified by the quasi-probability distribution Q function of the quantum state phase space. Therefore, the two-mode coupled harmonic oscillator has a major reference value in quantum control such as quantum decoherence and quantum information transmission.
    Like the two-mode squeezed vacuum state, the photon distribution of the output quantum light field corresponding to the two-mode harmonic oscillator presents a super-Poisson distribution, and the photons exhibit a strong anti-bunching effect. Using the three-dimensional discrete plot of the photon number distribution, the super-Poisson distribution and quantum dissipation effect of the output quantum state are intuitively demonstrated.
    Finally, the SV entanglement criterion is used to determine that the output quantum state has a high degree of entanglement. Further numerical analysis shows that the degree of entanglement increases with the action time and the oscillator frequency.
    In summary, the two-mode coupled harmonic oscillator constructed in this paper can be used to prepare highly entangled quantum states through a complete quantum dissipation process. This provides theoretical support for the experimental preparation of quantum entangled states based on dissipative mechanisms.
  • [1]

    Xu X W, Ren T Q, Liu S Y, Dong Y M, Zhao J D 2006 Acta Phys Sin-Ch Ed 55 535(in Chinese) [徐秀玮,任廷琦,刘姝延,董永绵,赵继德2005物理学报55 535]

    [2]

    Qu L C, Chen J, Liu Y X 2022 Phys Rev D 105 126015

    [3]

    Hou B P, Wang S J, Yu W L, Sun W L, Wang G 2004 Chinese Phys Lett 21 2334

    [4]

    Mechler M, Man'ko M A, Man'ko V I, Adam P 2024 J Russ Laser Res 45 1

    [5]

    Schrödinger E 1926 Physical Review 28 1049

    [6]

    Zhang X L, Liu H, Yu H J, Zhang W H 2011 Acta Phys Sin 60040303(in Chinese) [张秀兰,刘恒,余海军,张文海2011物理学报60040303]

    [7]

    Zhong Z R, Sheng J Q, Lin L H, Zheng S B 2019 Opt Lett 44 1726

    [8]

    Glauber R J 1963 Physical Review 130 2529

    [9]

    Cardoso F R, Rossatto D Z, Fernandes G, Higgins G, Villas-Boas C J 2021 Phys Rev A 103 062405

    [10]

    Lu H L, Fan H Y 2007 Commun Theor Phys 47 1024

    [11]

    De Castro A S M, Dodonov V V 2001 J Opt B-Quantum S O 3 228

    [12]

    Jiang L, Lai L, Yu T, Luo M K 2021 Acta Phys Sin-Ch Ed 70 130501(in Chinese)[姜磊,赖莉,蔚涛,罗懋康2021物理学报70 130501]

    [13]

    Einstein A, Podolsky B, Rosen N 1935 Physical Review 47 777

    [14]

    Fan H Y 2002 Chinese Phys Lett 19 897

    [15]

    Zhang J-D, Wang S 2024 Phys Lett A 502 129400

    [16]

    Caldeira A O, Leggett A J 1981Phys Rev Lett 46211

    [17]

    Wang X B, Yu S X, Zhang Y D 1994 J Phys a-Math Gen 27 6563

    [18]

    Ghiu I, Marian P, Marian T A 2013 Phys Scripta T153014028

    [19]

    Tian L J, Zhu C Q, Zhang H B, Qin L G 2011 Chinese Phys B 20040302

    [20]

    He H, Lou Y, Xu X, Liu S, Jing J 2023 Opt Lett 48 1375

    [21]

    Bose S 2021 Phys Rev A 104 042419

    [22]

    Harrington P M, Mueller E J, Murch K W 2022Nat. Rev. Phys. 4 660

    [23]

    Chen Y H, Shi Z C, Song J, Xia Y, Zheng S B 2017Phys Rev A 96043853

    [24]

    Sauer S, Gneiting C, Buchleitner A 2013Phys Rev Lett111 030405

    [25]

    Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I, Polzik E S 2011Phys Rev Lett 107 080503

    [26]

    Choi T, Lee H J 2007Phys Rev A 76 012308

    [27]

    Mandel L 1979 Opt Lett 4 205

    [28]

    Xu X F, Wang S, Tang B 2014 Chinese Phys B 23024206

    [29]

    Zhang H L, Jia F, Xu X X, Guo Q, Tao X Y, Hu L Y 2013 Acta Phys Sin 62014208(in Chinese) [张浩亮,贾芳,徐学翔,郭琴,陶向阳,胡利云2013物理学报62014208]

    [30]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev Mod Phys 81 865

    [31]

    Shchukin E V, Vogel W 2005 Phys Rev A 72043808

  • [1] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠. 物理学报, doi: 10.7498/aps.72.20222030
    [2] 刘腾, 陆鹏飞, 胡碧莹, 吴昊, 劳祺峰, 边纪, 刘泱, 朱峰, 罗乐. 离子阱中以声子为媒介的多体量子纠缠与逻辑门. 物理学报, doi: 10.7498/aps.71.20220360
    [3] 宋悦, 李军奇, 梁九卿. 级联环境下三量子比特量子关联动力学研究. 物理学报, doi: 10.7498/aps.70.20202133
    [4] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展. 物理学报, doi: 10.7498/aps.70.20210923
    [5] 仲银银, 潘晓州, 荆杰泰. 级联四波混频相干反馈控制系统量子纠缠特性. 物理学报, doi: 10.7498/aps.69.20200042
    [6] 许鹏, 何晓东, 刘敏, 王谨, 詹明生. 中性原子量子计算研究进展. 物理学报, doi: 10.7498/aps.68.20182133
    [7] 任志红, 李岩, 李艳娜, 李卫东. 基于量子Fisher信息的量子计量进展. 物理学报, doi: 10.7498/aps.68.20181965
    [8] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控. 物理学报, doi: 10.7498/aps.68.20181837
    [9] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, doi: 10.7498/aps.67.20172634
    [10] 王灿灿. 量子纠缠与宇宙学弗里德曼方程. 物理学报, doi: 10.7498/aps.67.20180813
    [11] 安志云, 李志坚. 逾渗分立时间量子行走的传输及纠缠特性. 物理学报, doi: 10.7498/aps.66.130303
    [12] 苏耀恒, 陈爱民, 王洪雷, 相春环. 一维自旋1键交替XXZ链中的量子纠缠和临界指数. 物理学报, doi: 10.7498/aps.66.120301
    [13] 丛美艳, 杨晶, 黄燕霞. 在不同初态下Dzyaloshinskii-Moriya相互作用及内禀退相干对海森伯系统的量子纠缠的影响. 物理学报, doi: 10.7498/aps.65.170301
    [14] 夏建平, 任学藻, 丛红璐, 王旭文, 贺树. 两量子比特与谐振子相耦合系统中的量子纠缠演化特性. 物理学报, doi: 10.7498/aps.61.014208
    [15] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, doi: 10.7498/aps.61.210502
    [16] 刘圣鑫, 李莎莎, 孔祥木. Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响. 物理学报, doi: 10.7498/aps.60.030303
    [17] 陈宇, 邹健, 李军刚, 邵彬. 耗散环境下三原子之间稳定纠缠的量子反馈控制. 物理学报, doi: 10.7498/aps.59.8365
    [18] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, doi: 10.7498/aps.59.2193
    [19] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠. 物理学报, doi: 10.7498/aps.55.4631
    [20] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干. 物理学报, doi: 10.7498/aps.51.1989
计量
  • 文章访问数:  97
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-29

/

返回文章
返回