搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子阱中以声子为媒介的多体量子纠缠与逻辑门

刘腾 陆鹏飞 胡碧莹 吴昊 劳祺峰 边纪 刘泱 朱峰 罗乐

引用本文:
Citation:

离子阱中以声子为媒介的多体量子纠缠与逻辑门

刘腾, 陆鹏飞, 胡碧莹, 吴昊, 劳祺峰, 边纪, 刘泱, 朱峰, 罗乐

Phonon-mediated many-body quantum entanglement and logic gates in ion traps

Liu Teng, Lu Peng-Fei, Hu Bi-Ying, Wu Hao, Lao Qi-Feng, Bian Ji, Liu Yang, Zhu Feng, Luo Le
PDF
HTML
导出引用
  • 高保真度的多离子纠缠和量子逻辑门是离子阱量子计算的基础. 在现有的方案中, Mølmer-Sørensen 门是比较成熟的实现多离子纠缠和量子逻辑门的实验方案. 近年来, 还出现了通过设计超快激光脉冲序列, 在Lamb-Dicke区域以外实现超快量子纠缠和量子逻辑门的方案. 这些方案均借助离子链这一多体量子系统的声子能级来耦合离子之间的自旋状态, 并且均通过调制激光脉冲或设计合适的脉冲序列解耦多运动模式, 来提高纠缠门的保真度. 本文从理论和实验层面分析了这些多体量子纠缠和量子逻辑门操作的关键技术, 揭示了离子阱中利用激光场驱动离子链运动态, 通过非平衡过程中的非线性相互作用, 来实现量子逻辑门的基本物理过程.
    The high-fidelity multi-ion entangled states and quantum gates are the basis for trapped-ion quantum computing. Among the developed quantum gate schemes, Mølmer-Sørensen gate is a relatively mature experimental technique to realize multi-ion entanglement and quantum logic gates. In recent years, there have also been schemes to realize ultrafast quantum entanglement and quantum logic gates that operate outside the Lamb-Dicke regime by designing ultrafast laser pulse sequences. In such a many-body quantum system, these entanglement gates couple the spin states between ions by driving either the phonon energy level or the motional state of the ion chain. To improve the fidelity of quantum gates, the modulated laser pulses or the appropriately designed pulse sequences are applied to decouple the multi-mode motional states. In this review, we summarize and analyze the essential aspects of realizing these entanglement gates from both theoretical and experimental points of view. We also reveal that the basic physical process of realizing quantum gates is to utilize nonlinear interactions in non-equilibrium processes through driving the motional states of an ion chain with laser fields.
      通信作者: 刘腾, liut87@mail2.sysu.edu.cn ; 罗乐, luole5@mail.sysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774436, 11974434, 12074439)、广东省自然科学基金(批准号: 2020A1515011159)、广东省重点领域研发计划项目(批准号: 2019B030330001)、广州市科技计划项目(批准号: 202102080380)、中山大学中央高校基本科研业务费专项资金(批准号: 2021qntd28)、中国博士后科学基金(批准号: 2021M703768)、广东省珠江人才计划项目(批准号: 2017GC010656)和中央引导地方科技发展资金(批准号: 2021Szvup172)资助的课题
      Corresponding author: Liu Teng, liut87@mail2.sysu.edu.cn ; Luo Le, luole5@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774436, 11974434, 12074439), the Natural Science Foundation of Guangdong Province, China (Grant No. 2020A1515011159), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2019B030330001), the Science and Technology Program of Guangzhou, China (Grant No. 202102080380), the Fundamental Research Funds for the Central Universities of Ministry of Education of China, Sun Yat-sen University (Grant No. 2021qntd28), the China Postdoctoral Science Foundation (Grant No. 2021M703768), the Guangdong Province Pearl River Youth Talents Program, China (Grant No. 2017GC010656), and the Central-Leading-Local Scientific and Technological Development Foundation, China (Grant No. 2021Szvup172)
    [1]

    Schmidt-Kaler F, Häffner H, Riebe M, Gulde S, Lancaster G P T, Deuschle T, Becher C, Roos C F, Eschner J, Blatt R 2003 Nature 422 408Google Scholar

    [2]

    Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D J, Monroe C 2000 Nature 404 256Google Scholar

    [3]

    Marquet C, Schmidt-Kaler F, James D F V 2003 Appl. Phys. B 76 199Google Scholar

    [4]

    James D F V 1998 Appl. Phys. B: Lasers Opt. 66 181Google Scholar

    [5]

    Zhu S L, Monroe C, Duan L M 2006 Phys. Rev. Lett. 97 050505Google Scholar

    [6]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [7]

    Wineland D J, Monroe C, Itano W M, Leibfried D, King B E, Meekhof D M 1998 J. Res. Natl. Inst. Stand. Technol. 103 259Google Scholar

    [8]

    Meekhof D M, Leibfried D, Monroe C, King B E, Itano W M, Wineland D J 1997 Brazilian J. Phys. 27 15

    [9]

    Diedrich F, Bergquist J C, Itano W M, Wineland D J 1989 Phys. Rev. Lett. 62 403Google Scholar

    [10]

    Monroe C, Meekhof D M, King B E, Jefferts S R, Itano W M, Wineland D J, Gould P 1995 Phys. Rev. Lett. 75 4011Google Scholar

    [11]

    King B E, Wood C S, Myatt C J, Turchette Q A, Leibfried D, Itano W M, Monroe C, Wineland D J 1998 Phys. Rev. Lett. 81 1525Google Scholar

    [12]

    Mølmer K, Sørensen A 1999 Phys. Rev. Lett. 82 1835Google Scholar

    [13]

    Sørensen A, Mølmer K 1999 Phys. Rev. Lett. 82 1971Google Scholar

    [14]

    Kim K, Chang M S, Islam R, Korenblit S, Duan L M, Monroe C 2009 Phys. Rev. Lett. 103 120502Google Scholar

    [15]

    Leung P H, Landsman K A, Figgatt C, Linke N M, Monroe C, Brown K R 2018 Phys. Rev. Lett. 120 020501Google Scholar

    [16]

    Landsman K A, Wu Y K, Leung P H, Zhu D W, Linke N M, Brown K R, Duan L M, Monroe C 2019 Phys. Rev. A 100 022332Google Scholar

    [17]

    Benhelm J, Kirchmair G, Roos C F, Blatt R 2008 Nat. Phys. 4 463Google Scholar

    [18]

    Roos C F 2008 New J. Phys. 10 013002Google Scholar

    [19]

    Klarsfeld S, Oteo J A 1989 Phys. Rev. A 39 3270Google Scholar

    [20]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325Google Scholar

    [21]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [22]

    Pe'er A, Shapiro E A, Stowe M C, Shapiro M, Ye J 2007 Phys. Rev. Lett. 98 113004Google Scholar

    [23]

    Hayes D, Matsukevich D N, Maunz P, Hucul D, Quraishi Q, Olmschenk S, Campbell W, Mizrahi J, Senko C, Monroe C 2010 Phys. Rev. Lett. 104 140501Google Scholar

    [24]

    Wong-Campos J D, Moses S A, Johnson K G, Monroe C 2017 Phys. Rev. Lett. 119 230501Google Scholar

    [25]

    Mizrahi J, Senko C, Neyenhuis B, Johnson K G, Campbell W C, Conover C W S, Monroe C 2013 Phys. Rev. Lett. 110 203001Google Scholar

    [26]

    Mizrahi J, Neyenhuis B, Johnson K G, Campbell W C, Senko C, Hayes D, Monroe C 2014 Appl. Phys. B 114 45

    [27]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information, 10th Anniversary Edition (New York: Cambridge University Press) pp189–193

    [28]

    Soderberg K A B and Monroe C 2010 Rep. Prog. Phys. 73 036401Google Scholar

    [29]

    Figgatt C, Ostrander A, Linke N M, Landsman K A, Zhu D W, Maslov D, Monroe C 2019 Nature 572 368Google Scholar

    [30]

    Lu Y, Zhang S N, Zhang K, Chen W T, Shen Y C, Zhang J L, Zhang J N, Kim K 2019 Nature 572 363Google Scholar

    [31]

    Choi T, Debnath S, Manning T A, Figgatt C, Gong Z X, Duan L M, Monroe C 2014 Phys. Rev. Lett. 112 190502Google Scholar

    [32]

    Zhu S L, Monroe C, Duan L M 2006 Europhys. Lett. 73 485Google Scholar

    [33]

    Green T J, Biercuk M J 2015 Phys. Rev. Lett. 114 120502Google Scholar

    [34]

    Schäfer V M, Ballance C J, Thirumalai K, Stephenson L J, Ballance T G, Steane A M, Lucas D M 2018 Nature 555 75Google Scholar

    [35]

    Hussain M I, Heinrich D, Guevara-Bertsch M, Torrontegui E, García-Ripoll J J, Roos C F, Blatt R 2021 Phys. Rev. Appl. 15 024054Google Scholar

    [36]

    Ratcliffe A K, Oberg L M, Hope J J 2020 Phys. Rev. A 101 052332Google Scholar

    [37]

    Mehdi Z, Ratcliffe A K, Hope J J 2021 Phys. Rev. Res. 3 013026Google Scholar

    [38]

    Campbell W C, Mizrahi J, Quraishi Q, Senko C, Hayes D, Hucul D, Matsukevich D N, Maunz P, Monroe C 2010 Phys. Rev. Lett. 105 090502Google Scholar

    [39]

    Debnath S, Linke N M, Figgatt C, Landsman K A, Wright K, Monroe C 2016 Nature 536 63Google Scholar

    [40]

    Monroe C, Campbell W C, Duan L M, Gong Z X, Gorshkov A V, Hess P W, Islam R, Kim K, Linke N M, Pagano G, Richerme P, Senko C, Yao N Y 2021 Rev. Mod. Phys. 93 025001Google Scholar

    [41]

    Moehring D L, Blinov B B, Gidley D W, Kohn R N, J r., Madsen M J, Sanderson T D, Vallery R S, Monroe C 2006 Phys. Rev. A 73 023413Google Scholar

    [42]

    Blinov B B, Kohn R N, J r., Madsen M J, Maunz P, Moehring D L, Monroe C 2006 J. Opt. Soc. Am. B 23 1170Google Scholar

    [43]

    Madsen M J, Moehring D L, Maunz P, Kohn R N, Jr., Duan L M, Monroe C 2006 Phys. Rev. Lett. 97 040505Google Scholar

    [44]

    Johnson K G, Wong-Campos J D, Neyenhuis B, Mizrahi J, Monroe C 2017 Nat. Commun. 8 1Google Scholar

    [45]

    Gardiner S A, Cirac J I, Zoller P 1997 Phys. Rev. Lett. 79 4790Google Scholar

  • 图 1  两离子在阱中的振动模式 (a) 质心模; (b) 呼吸模

    Fig. 1.  Vibration modes of two ions in trap: (a) Center of mass mode; (b) relative motion mode.

    图 2  5个离子径向模式和轴向模式的本征频率 (a) 径向模式的本征频率以及本征模向量, $b_m(m=1—5)$表示了5个离子远离平衡位置$x_0$的大小, $\delta$是执行受激拉曼跃迁过程中设置的失谐; (b) 模拟计算的径向模式和轴向模式的本征频率谱

    Fig. 2.  Eigenfrequencies of the transverse and axial modes of the 5 ions in trap: (a) Eigenfrequencies of transverse modes and eigenmode vectors, $b_m(m=1-5)$ represents the size of the 5 ions away from the equilibrium position $x_0$, $\delta$ is the detuning in stimulated Raman transition; (b) simulated eigenfrequency spectra of transverse and axial modes.

    图 3  $^ {171}{\rm{Yb}}^{+}$中受激拉曼跃迁示意图 ( $\omega_1$$\omega_2$分别为两束激光的频率; $\varDelta$为两束激光在$^ {2}{\rm{P}}_{1/2}$能级处的失谐)

    Fig. 3.  The stimulated Raman transition of $^ {171}{\rm{Yb}}^{+}$($\omega_1$ and $\omega_2$ are the frequencies of the two laser beams; $\varDelta$ is the detuning of the two laser beams at the $^ {2}{\rm{P}}_{1/2}$ energy level).

    图 4  边带跃迁和边带冷却示意图 (a) 载波(黑)、红边带(红)和蓝边带(蓝)跃迁; (b) $^{171}{\rm{Yb}}^+$红边带冷却示意图

    Fig. 4.  Schematic diagram of sideband transition and sideband cooling: (a) Carrier (black arrow), red sideband (red arrow) and blue sideband (blue arrow) transitions; (b) red sideband cooling of $^{171}{\rm{Yb}}^+$.

    图 5  Mølmer-Sørensen门能级跃迁示意图, 其中$\omega_{\rm{b}}$, $\omega_{\rm{r}}$分别为蓝边带和红边带的频率, 红色箭头和蓝色箭头分别为红边带跃迁和蓝边带跃迁. $\nu$为声子频率, $\delta$为红、蓝边带处的小失谐

    Fig. 5.  The energy level transition in Mølmer-Sørensen gate. $\omega_{\rm{b}}$ and $\omega_{\rm{r}}$ are frequencies of blue sideband and red sideband respectively, and blue arrow and red arrow are blue sideband transition and red sideband transition respectively; $\nu$ is the phonon frequency, and $\delta$ is the small detuning of each sideband.

    图 6  自旋依赖的动量转移 (a) 不同自旋状态在相空间被转移的方向不同, 红色圆代表$ \left| \uparrow \right\rangle $态, 蓝色圆代表$ \left| \downarrow \right\rangle $态; (b) 超快脉冲序列照射离子产生自旋依赖的动量转移

    Fig. 6.  Spin-dependent momentum transfer: (a) Different spin states are transferred in different directions in phase space, red circle represents $ \left| \uparrow \right\rangle $ state and blue circle represents $ \left| \downarrow \right\rangle $ state; (b) ultrafast pulse trains irradiate ions and produce spin-dependent momentum transfer.

    图 7  脉冲激光线宽覆盖若干个本征频率的示意图

    Fig. 7.  Schematic of laser linewidth covering several eigenfrequencies.

    图 8  门时间为$200 \ \mu{\rm{s}}$, 失谐$\delta$为3.0318 MHz时脉冲幅度调制模拟结果

    Fig. 8.  Simulation result of laser amplitude modulation when gate time is $200 \; \mu{\rm{s}}$ and detuning $\delta$ is 3.0318 MHz.

    图 9  5个振动模式的运动态在相空间内的运动轨迹 (a)线频率为3.058 MHz的模式1; (b) 线频率为3.047 MHz的模式2; (c) 线频率为3.0209 MHz的模式3; (d) 线频率为2.9936 MHz的模式4; (e) 线频率为2.9611 MHz的模式5

    Fig. 9.  The motional state trajectories of the five vibration modes in phase space: (a) Mode 1, line frequency is 3.058 MHz; (b) Mode 2, line frequency is 3.047 MHz; (c) Mode 3, line frequency is 3.0209 MHz; (d) Mode 4, line frequency is 2.9936 MHz; (e) Mode 5, line frequency is 2.9611 MHz.

    图 10  两个运动模式在脉冲序列的作用下与自旋解耦 (a) 超快脉冲序列; (b) 两个运动模式在相空间的运动轨迹

    Fig. 10.  Two motional modes are decoupled from spin: (a) Ultrafast pulse train; (b) trajectories of two motion modes in phase space.

    表 1  离子链上的离子位置

    Table 1.  Ion position on the ion chain.

    离子序数12345
    位置/$\mu {\rm{m}}$–10.52–4.9604.9610.52
    下载: 导出CSV
  • [1]

    Schmidt-Kaler F, Häffner H, Riebe M, Gulde S, Lancaster G P T, Deuschle T, Becher C, Roos C F, Eschner J, Blatt R 2003 Nature 422 408Google Scholar

    [2]

    Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D J, Monroe C 2000 Nature 404 256Google Scholar

    [3]

    Marquet C, Schmidt-Kaler F, James D F V 2003 Appl. Phys. B 76 199Google Scholar

    [4]

    James D F V 1998 Appl. Phys. B: Lasers Opt. 66 181Google Scholar

    [5]

    Zhu S L, Monroe C, Duan L M 2006 Phys. Rev. Lett. 97 050505Google Scholar

    [6]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [7]

    Wineland D J, Monroe C, Itano W M, Leibfried D, King B E, Meekhof D M 1998 J. Res. Natl. Inst. Stand. Technol. 103 259Google Scholar

    [8]

    Meekhof D M, Leibfried D, Monroe C, King B E, Itano W M, Wineland D J 1997 Brazilian J. Phys. 27 15

    [9]

    Diedrich F, Bergquist J C, Itano W M, Wineland D J 1989 Phys. Rev. Lett. 62 403Google Scholar

    [10]

    Monroe C, Meekhof D M, King B E, Jefferts S R, Itano W M, Wineland D J, Gould P 1995 Phys. Rev. Lett. 75 4011Google Scholar

    [11]

    King B E, Wood C S, Myatt C J, Turchette Q A, Leibfried D, Itano W M, Monroe C, Wineland D J 1998 Phys. Rev. Lett. 81 1525Google Scholar

    [12]

    Mølmer K, Sørensen A 1999 Phys. Rev. Lett. 82 1835Google Scholar

    [13]

    Sørensen A, Mølmer K 1999 Phys. Rev. Lett. 82 1971Google Scholar

    [14]

    Kim K, Chang M S, Islam R, Korenblit S, Duan L M, Monroe C 2009 Phys. Rev. Lett. 103 120502Google Scholar

    [15]

    Leung P H, Landsman K A, Figgatt C, Linke N M, Monroe C, Brown K R 2018 Phys. Rev. Lett. 120 020501Google Scholar

    [16]

    Landsman K A, Wu Y K, Leung P H, Zhu D W, Linke N M, Brown K R, Duan L M, Monroe C 2019 Phys. Rev. A 100 022332Google Scholar

    [17]

    Benhelm J, Kirchmair G, Roos C F, Blatt R 2008 Nat. Phys. 4 463Google Scholar

    [18]

    Roos C F 2008 New J. Phys. 10 013002Google Scholar

    [19]

    Klarsfeld S, Oteo J A 1989 Phys. Rev. A 39 3270Google Scholar

    [20]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325Google Scholar

    [21]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [22]

    Pe'er A, Shapiro E A, Stowe M C, Shapiro M, Ye J 2007 Phys. Rev. Lett. 98 113004Google Scholar

    [23]

    Hayes D, Matsukevich D N, Maunz P, Hucul D, Quraishi Q, Olmschenk S, Campbell W, Mizrahi J, Senko C, Monroe C 2010 Phys. Rev. Lett. 104 140501Google Scholar

    [24]

    Wong-Campos J D, Moses S A, Johnson K G, Monroe C 2017 Phys. Rev. Lett. 119 230501Google Scholar

    [25]

    Mizrahi J, Senko C, Neyenhuis B, Johnson K G, Campbell W C, Conover C W S, Monroe C 2013 Phys. Rev. Lett. 110 203001Google Scholar

    [26]

    Mizrahi J, Neyenhuis B, Johnson K G, Campbell W C, Senko C, Hayes D, Monroe C 2014 Appl. Phys. B 114 45

    [27]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information, 10th Anniversary Edition (New York: Cambridge University Press) pp189–193

    [28]

    Soderberg K A B and Monroe C 2010 Rep. Prog. Phys. 73 036401Google Scholar

    [29]

    Figgatt C, Ostrander A, Linke N M, Landsman K A, Zhu D W, Maslov D, Monroe C 2019 Nature 572 368Google Scholar

    [30]

    Lu Y, Zhang S N, Zhang K, Chen W T, Shen Y C, Zhang J L, Zhang J N, Kim K 2019 Nature 572 363Google Scholar

    [31]

    Choi T, Debnath S, Manning T A, Figgatt C, Gong Z X, Duan L M, Monroe C 2014 Phys. Rev. Lett. 112 190502Google Scholar

    [32]

    Zhu S L, Monroe C, Duan L M 2006 Europhys. Lett. 73 485Google Scholar

    [33]

    Green T J, Biercuk M J 2015 Phys. Rev. Lett. 114 120502Google Scholar

    [34]

    Schäfer V M, Ballance C J, Thirumalai K, Stephenson L J, Ballance T G, Steane A M, Lucas D M 2018 Nature 555 75Google Scholar

    [35]

    Hussain M I, Heinrich D, Guevara-Bertsch M, Torrontegui E, García-Ripoll J J, Roos C F, Blatt R 2021 Phys. Rev. Appl. 15 024054Google Scholar

    [36]

    Ratcliffe A K, Oberg L M, Hope J J 2020 Phys. Rev. A 101 052332Google Scholar

    [37]

    Mehdi Z, Ratcliffe A K, Hope J J 2021 Phys. Rev. Res. 3 013026Google Scholar

    [38]

    Campbell W C, Mizrahi J, Quraishi Q, Senko C, Hayes D, Hucul D, Matsukevich D N, Maunz P, Monroe C 2010 Phys. Rev. Lett. 105 090502Google Scholar

    [39]

    Debnath S, Linke N M, Figgatt C, Landsman K A, Wright K, Monroe C 2016 Nature 536 63Google Scholar

    [40]

    Monroe C, Campbell W C, Duan L M, Gong Z X, Gorshkov A V, Hess P W, Islam R, Kim K, Linke N M, Pagano G, Richerme P, Senko C, Yao N Y 2021 Rev. Mod. Phys. 93 025001Google Scholar

    [41]

    Moehring D L, Blinov B B, Gidley D W, Kohn R N, J r., Madsen M J, Sanderson T D, Vallery R S, Monroe C 2006 Phys. Rev. A 73 023413Google Scholar

    [42]

    Blinov B B, Kohn R N, J r., Madsen M J, Maunz P, Moehring D L, Monroe C 2006 J. Opt. Soc. Am. B 23 1170Google Scholar

    [43]

    Madsen M J, Moehring D L, Maunz P, Kohn R N, Jr., Duan L M, Monroe C 2006 Phys. Rev. Lett. 97 040505Google Scholar

    [44]

    Johnson K G, Wong-Campos J D, Neyenhuis B, Mizrahi J, Monroe C 2017 Nat. Commun. 8 1Google Scholar

    [45]

    Gardiner S A, Cirac J I, Zoller P 1997 Phys. Rev. Lett. 79 4790Google Scholar

  • [1] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠. 物理学报, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [2] 李廷伟, 荣星, 杜江峰. 固态单自旋量子控制研究进展. 物理学报, 2022, 71(6): 060304. doi: 10.7498/aps.71.20211808
    [3] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊. 基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现. 物理学报, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [4] 仲银银, 潘晓州, 荆杰泰. 级联四波混频相干反馈控制系统量子纠缠特性. 物理学报, 2020, 69(13): 130301. doi: 10.7498/aps.69.20200042
    [5] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度. 物理学报, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [6] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控. 物理学报, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [7] 张茜, 李萌, 龚旗煌, 李焱. 飞秒激光直写光量子逻辑门. 物理学报, 2019, 68(10): 104205. doi: 10.7498/aps.68.20190024
    [8] 王灿灿. 量子纠缠与宇宙学弗里德曼方程. 物理学报, 2018, 67(17): 179501. doi: 10.7498/aps.67.20180813
    [9] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [10] 安志云, 李志坚. 逾渗分立时间量子行走的传输及纠缠特性. 物理学报, 2017, 66(13): 130303. doi: 10.7498/aps.66.130303
    [11] 苏耀恒, 陈爱民, 王洪雷, 相春环. 一维自旋1键交替XXZ链中的量子纠缠和临界指数. 物理学报, 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [12] 丛美艳, 杨晶, 黄燕霞. 在不同初态下Dzyaloshinskii-Moriya相互作用及内禀退相干对海森伯系统的量子纠缠的影响. 物理学报, 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [13] 苟立丹, 王晓茜. 杨-巴克斯特自旋1/2链模型的量子关联研究. 物理学报, 2015, 64(7): 070302. doi: 10.7498/aps.64.070302
    [14] 夏建平, 任学藻, 丛红璐, 王旭文, 贺树. 两量子比特与谐振子相耦合系统中的量子纠缠演化特性. 物理学报, 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [15] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [16] 刘圣鑫, 李莎莎, 孔祥木. Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响. 物理学报, 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [17] 陈宇, 邹健, 李军刚, 邵彬. 耗散环境下三原子之间稳定纠缠的量子反馈控制. 物理学报, 2010, 59(12): 8365-8370. doi: 10.7498/aps.59.8365
    [18] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [19] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠. 物理学报, 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [20] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干. 物理学报, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
计量
  • 文章访问数:  4769
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-03-29
  • 上网日期:  2022-04-17
  • 刊出日期:  2022-04-20

/

返回文章
返回