搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米尺度热物理中的声子弱耦合问题

潘东楷 宗志成 杨诺

引用本文:
Citation:

纳米尺度热物理中的声子弱耦合问题

潘东楷, 宗志成, 杨诺

Phonon weak couplings in nanoscale thermophysics

Pan Dong-Kai, Zong Zhi-Cheng, Yang Nuo
PDF
HTML
导出引用
  • 纳米尺度热物理中的诸多新现象、新机制与声子弱耦合存在密切关联. 本文介绍了声子弱耦合机制, 以及相关的物理现象: 低维体系中热导率的尺寸效应、声子双温度现象和范德瓦耳斯堆叠界面的高热阻等. 同时概述了近年国内外学者对于这些新颖物理现象的前沿研究成果. 对声子弱耦合目前面临的问题, 例如理论模型如何加入声子波动性等, 进行了简要讨论和展望.
    With the development of nanoscale thermophysics, a vast number of novel phenomena have emerged, which closely relate to phonon weak couplings. The causes of phonon weak couplings mechanism and related physical discoveries are discussed in this article, including the size effect of low-dimensional systems, multi-temperature model, and van der Waals cross interfaces. Corresponding frontier researches are also summarized. The current problems of phonon weak couplings, such as how to add phonon wave-like behaviors into the theoretical model, are also briefly discussed and prospected.
      通信作者: 杨诺, nuo@hust.edu.cn
      Corresponding author: Yang Nuo, nuo@hust.edu.cn
    [1]

    Li N, Ren J, Wang L, Zhang G, Hänggi P, Li B 2012 Rev. Mod. Phys. 84 1045Google Scholar

    [2]

    Chen G 2021 Nat. Rev. Phys. 3 555Google Scholar

    [3]

    Yang N, Xu X, Zhang G, Li B 2012 AIP Adv. 2 041410Google Scholar

    [4]

    Xiao Y, Chen Q, Ma D, Yang N, Hao Q 2019 ES Mater. Manuf. 5 2Google Scholar

    [5]

    Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E, Shi L 2014 Appl. Phys. Rev. 1 011305Google Scholar

    [6]

    Razeeb K M, Dalton E, Cross G L W, Robinson A J 2018 Int. Mater. Rev. 63 1Google Scholar

    [7]

    Bar-Cohen A, Matin K, Narumanchi S 2015 J. Electron. Packag. 137 040803Google Scholar

    [8]

    Ma D, Arora A, Deng S, Xie G, Shiomi J, Yang N 2019 Mater. Today Phys. 8 56Google Scholar

    [9]

    Deng C, Huang Y, An M, Yang N 2021 Mater. Today Phys. 16 100305Google Scholar

    [10]

    An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B, Yang N 2017 Nano Lett. 17 5805Google Scholar

    [11]

    Vallabhaneni A K, Singh D, Bao H, Murthy J, Ruan X 2016 Phys. Rev. B 93 125432Google Scholar

    [12]

    Gu X, Fan Z, Bao H, Zhao C Y 2019 Phys. Rev. B 100 064306Google Scholar

    [13]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213Google Scholar

    [14]

    Sullivan S, Vallabhaneni A, Kholmanov I, Ruan X, Murthy J, Shi L 2017 Nano Lett. 17 2049Google Scholar

    [15]

    Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N, Balandin A A 2010 Nat. Mater. 9 555Google Scholar

    [16]

    Woods L M, Dalvit D A R, Tkatchenko A, Rodriguez-Lopez P, Rodriguez A W, Podgornik R 2016 Rev. Mod. Phys. 88 045003Google Scholar

    [17]

    Yang N 2009 Ph. D. Dissertation (Singapore: National University of Singapore)

    [18]

    Balandin A A 2011 Nat. Mater. 10 569Google Scholar

    [19]

    Lu Z, Vallabhaneni A, Cao B, Ruan X 2018 Phys. Rev. B 98 134309Google Scholar

    [20]

    Zhang C, Ma D K, Shang M Y, Wan X, Lü J T, Guo Z L, Li B W, Yang N 2022 Mater. Today Phys. 22 100605Google Scholar

    [21]

    Ma D, Ding H, Wang X, Yang N, Zhang X 2017 Int. J. Heat Mass Transf. 108 940Google Scholar

    [22]

    Meng H, Maruyama S, Xiang R, Yang N 2021 Int. J. Heat Mass Transf. 180 121773Google Scholar

    [23]

    Song Q, An M, Chen X, Peng Z, Zang J, Yang N 2016 Nanoscale 8 14943Google Scholar

    [24]

    Lepri S, Livi R, Politi A 1997 Phys. Rev. Lett. 78 1896Google Scholar

    [25]

    Prosen T, Campbell D K 2000 Phys. Rev. Lett. 84 2857Google Scholar

    [26]

    Lippi A, Livi R 2000 J. Stat. Phys. 100 1147Google Scholar

    [27]

    Lepri S 2003 Phys. Rep. 377 1Google Scholar

    [28]

    Dhar A 2008 Adv. Phys. 57 457Google Scholar

    [29]

    Wang L, Hu B, Li B 2012 Phys. Rev. E 86 040101Google Scholar

    [30]

    Xu X, Chen J, Li B 2016 J. Phys. Condens. Matter 28 483001Google Scholar

    [31]

    Lepri S, Livi R, Politi A 2005 Chaos Interdiscip. J. Nonlinear Sci. 15 015118Google Scholar

    [32]

    Yang N, Li N, Wang L, Li B 2007 Phys. Rev. B 76 020301Google Scholar

    [33]

    Li N, Li B, Flach S 2010 Phys. Rev. Lett. 105 054102Google Scholar

    [34]

    Liu S, Hänggi P, Li N, Ren J, Li B 2014 Phys. Rev. Lett. 112 040601Google Scholar

    [35]

    Benenti G, Lepri S, Livi R 2020 Front. Phys. 8 292Google Scholar

    [36]

    Lepri S, Livi R, Politi A 2020 Phys. Rev. Lett. 125 040604Google Scholar

    [37]

    Wang M, Yang N, Guo Z Y 2011 J. Appl. Phys. 110 064310Google Scholar

    [38]

    Maruyama S 2002 Phys. B Condens. Matter 323 193Google Scholar

    [39]

    Zhang G, Li B 2005 J. Chem. Phys. 123 114714Google Scholar

    [40]

    Yang N, Zhang G, Li B 2010 Nano Today 5 85Google Scholar

    [41]

    Wang M, Shan X, Yang N 2012 Phys. Lett. A 376 3514Google Scholar

    [42]

    Yang L, Tao Y, Zhu Y, Akter M, Wang K, Pan Z, Zhao Y, Zhang Q, Xu Y Q, Chen R, Xu T T, Chen Y, Mao Z, Li D 2021 Nat. Nanotechnol. 16 764Google Scholar

    [43]

    Maruyama S 2003 Microscale Thermophys. Eng. 7 41Google Scholar

    [44]

    Lepri S 2000 Eur. Phys. J. B 18 441Google Scholar

    [45]

    Wang M, Guo Z-Y 2010 Phys. Lett. A 374 4312Google Scholar

    [46]

    Majee A K, Aksamija Z 2016 Phys. Rev. B 93 235423Google Scholar

    [47]

    Chang C W, Okawa D, Garcia H, Majumdar A, Zettl A 2008 Phys. Rev. Lett. 101 075903Google Scholar

    [48]

    Lee V, Wu C H, Lou Z X, Lee W L, Chang C W 2017 Phys. Rev. Lett. 118 135901Google Scholar

    [49]

    Gu X, Wei Y, Yin X, Li B, Yang R 2018 Rev. Mod. Phys. 90 041002Google Scholar

    [50]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [51]

    Lindsay L, Broido D A, Mingo N 2010 Phys. Rev. B 82 115427Google Scholar

    [52]

    Lindsay L, Li W, Carrete J, Mingo N, Broido D A, Reinecke T L 2014 Phys. Rev. B 89 155426Google Scholar

    [53]

    Nika D L, Ghosh S, Pokatilov E P, Balandin A A 2009 Appl. Phys. Lett. 94 203103Google Scholar

    [54]

    Bonini N, Garg J, Marzari N 2012 Nano Lett. 12 2673Google Scholar

    [55]

    Feng T, Ruan X, Ye Z, Cao B 2015 Phys. Rev. B 91 224301Google Scholar

    [56]

    Feng T, Ruan X 2018 Phys. Rev. B 97 045202Google Scholar

    [57]

    Xu X, Pereira L F C, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T L, Hong B H, Loh K P, Donadio D, Li B, Özyilmaz B 2014 Nat. Commun. 5 3689Google Scholar

    [58]

    Li W, Carrete J, Mingo N 2013 Appl. Phys. Lett. 103 253103Google Scholar

    [59]

    Zhu L, Zhang G, Li B 2014 Phys. Rev. B 90 214302Google Scholar

    [60]

    Liu S, Xu X F, Xie R G, Zhang G, Li B W 2012 Eur. Phys. J. B 85 337Google Scholar

    [61]

    Park M, Lee S C, Kim Y S 2013 J. Appl. Phys. 114 053506Google Scholar

    [62]

    Barbarino G, Melis C, Colombo L 2015 Phys. Rev. B 91 035416Google Scholar

    [63]

    Li Q Y, Takahashi K, Zhang X 2017 Phys. Rev. Lett. 119 179601Google Scholar

    [64]

    Barbalinardo G, Chen Z, Dong H, Fan Z, Donadio D 2021 Phys. Rev. Lett. 127 025902Google Scholar

    [65]

    Lu Z, Shi J, Ruan X 2019 J. Appl. Phys. 125 085107Google Scholar

    [66]

    Yang N, Hu S, Ma D, Lu T, Li B 2015 Sci. Rep. 5 14878Google Scholar

    [67]

    Guo Y, Wang M 2017 Phys. Rev. B 96 134312Google Scholar

    [68]

    Zhang C, Guo Z, Chen S 2019 Int. J. Heat Mass Transf. 130 1366Google Scholar

    [69]

    Yang J, Yang Y, Waltermire S W, Wu X, Zhang H, Gutu T, Jiang Y, Chen Y, Zinn A A, Prasher R, Xu T T, Li D 2012 Nat. Nanotechnol. 7 91Google Scholar

    [70]

    Hopkins P E 2013 ISRN Mech. Eng. 2013 1Google Scholar

    [71]

    Xiang R, Inoue T, Zheng Y, Kumamoto A, Qian Y, Sato Y, Liu M, Tang D, Gokhale D, Guo J, Hisama K, Yotsumoto S, Ogamoto T, Arai H, Kobayashi Y, Zhang H, Hou B, Anisimov A, Maruyama M, Miyata Y, Okada S, Chiashi S, Li Y, Kong J, Kauppinen E I, Ikuhara Y, Suenaga K, Maruyama S 2020 Science 367 537Google Scholar

    [72]

    Zhang H, Xiong S, Wang H, Volz S, Ni Y 2019 EPL Europhys. Lett. 125 46001Google Scholar

    [73]

    Tian Z, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304Google Scholar

    [74]

    Yang Y, Chen H, Wang H, Li N, Zhang L 2018 Phys. Rev. E 98 042131Google Scholar

    [75]

    Ju S, Shiga T, Feng L, Hou Z, Tsuda K, Shiomi J 2017 Phys. Rev. X 7 021024Google Scholar

    [76]

    Feng W, Yu X, Wang Y, Ma D, Sun Z, Deng C, Yang N 2019 Phys. Chem. Chem. Phys. 21 25072Google Scholar

    [77]

    Xiong Y, Yu X, Huang Y, Yang J, Li L, Yang N, Xu D 2019 Mater. Today Phys. 11 100139Google Scholar

    [78]

    Ni Z, Wang Y, Yu T, You Y, Shen Z 2008 Phys. Rev. B 77 235403Google Scholar

    [79]

    Feng J, Qi L, Huang J Y, Li J 2009 Phys. Rev. B 80 165407Google Scholar

    [80]

    Kim K, Lee Z, Malone B D, Chan K T, Alemán B, Regan W, Gannett W, Crommie M F, Cohen M L, Zettl A 2011 Phys. Rev. B 83 245433Google Scholar

    [81]

    Prada E, San-Jose P, Brey L 2010 Phys. Rev. Lett. 105 106802Google Scholar

    [82]

    Rainis D, Taddei F, Polini M, León G, Guinea F, Fal’ko V I 2011 Phys. Rev. B 83 165403Google Scholar

    [83]

    Yang N, Ni X, Jiang J W, Li B 2012 Appl. Phys. Lett. 100 093107Google Scholar

    [84]

    Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103Google Scholar

    [85]

    Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X, Chen K Q 2021 Appl. Phys. Lett. 119 063503Google Scholar

    [86]

    Deng C, Yu X, Huang X, Yang N 2017 J. Heat Transf. 139 054504Google Scholar

    [87]

    Song H, Liu J, Liu B, Wu J, Cheng H M, Kang F 2018 Joule 2 442Google Scholar

    [88]

    Zhu X L, Yang H, Zhou W X, Wang B, Xu N, Xie G 2020 ACS Appl. Mater. Interfaces 12 36102Google Scholar

    [89]

    Xie G, Ju Z, Zhou K, Wei X, Guo Z, Cai Y, Zhang G 2018 npj Comput. Mater. 4 21Google Scholar

    [90]

    Xu K, Deng S, Liang T, Cao X, Han M, Zeng X, Zhang Z, Yang N, Wu J 2022 Nanoscale 14 3078Google Scholar

  • 图 1  与声子弱耦合紧密相关的多个低维纳米尺度导热的新物理现象[10,17-23]

    Fig. 1.  The new physical phenomena in low dimensional heat conduction closely related to the phonon weak couplings[10,17-23].

  • [1]

    Li N, Ren J, Wang L, Zhang G, Hänggi P, Li B 2012 Rev. Mod. Phys. 84 1045Google Scholar

    [2]

    Chen G 2021 Nat. Rev. Phys. 3 555Google Scholar

    [3]

    Yang N, Xu X, Zhang G, Li B 2012 AIP Adv. 2 041410Google Scholar

    [4]

    Xiao Y, Chen Q, Ma D, Yang N, Hao Q 2019 ES Mater. Manuf. 5 2Google Scholar

    [5]

    Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E, Shi L 2014 Appl. Phys. Rev. 1 011305Google Scholar

    [6]

    Razeeb K M, Dalton E, Cross G L W, Robinson A J 2018 Int. Mater. Rev. 63 1Google Scholar

    [7]

    Bar-Cohen A, Matin K, Narumanchi S 2015 J. Electron. Packag. 137 040803Google Scholar

    [8]

    Ma D, Arora A, Deng S, Xie G, Shiomi J, Yang N 2019 Mater. Today Phys. 8 56Google Scholar

    [9]

    Deng C, Huang Y, An M, Yang N 2021 Mater. Today Phys. 16 100305Google Scholar

    [10]

    An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B, Yang N 2017 Nano Lett. 17 5805Google Scholar

    [11]

    Vallabhaneni A K, Singh D, Bao H, Murthy J, Ruan X 2016 Phys. Rev. B 93 125432Google Scholar

    [12]

    Gu X, Fan Z, Bao H, Zhao C Y 2019 Phys. Rev. B 100 064306Google Scholar

    [13]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213Google Scholar

    [14]

    Sullivan S, Vallabhaneni A, Kholmanov I, Ruan X, Murthy J, Shi L 2017 Nano Lett. 17 2049Google Scholar

    [15]

    Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N, Balandin A A 2010 Nat. Mater. 9 555Google Scholar

    [16]

    Woods L M, Dalvit D A R, Tkatchenko A, Rodriguez-Lopez P, Rodriguez A W, Podgornik R 2016 Rev. Mod. Phys. 88 045003Google Scholar

    [17]

    Yang N 2009 Ph. D. Dissertation (Singapore: National University of Singapore)

    [18]

    Balandin A A 2011 Nat. Mater. 10 569Google Scholar

    [19]

    Lu Z, Vallabhaneni A, Cao B, Ruan X 2018 Phys. Rev. B 98 134309Google Scholar

    [20]

    Zhang C, Ma D K, Shang M Y, Wan X, Lü J T, Guo Z L, Li B W, Yang N 2022 Mater. Today Phys. 22 100605Google Scholar

    [21]

    Ma D, Ding H, Wang X, Yang N, Zhang X 2017 Int. J. Heat Mass Transf. 108 940Google Scholar

    [22]

    Meng H, Maruyama S, Xiang R, Yang N 2021 Int. J. Heat Mass Transf. 180 121773Google Scholar

    [23]

    Song Q, An M, Chen X, Peng Z, Zang J, Yang N 2016 Nanoscale 8 14943Google Scholar

    [24]

    Lepri S, Livi R, Politi A 1997 Phys. Rev. Lett. 78 1896Google Scholar

    [25]

    Prosen T, Campbell D K 2000 Phys. Rev. Lett. 84 2857Google Scholar

    [26]

    Lippi A, Livi R 2000 J. Stat. Phys. 100 1147Google Scholar

    [27]

    Lepri S 2003 Phys. Rep. 377 1Google Scholar

    [28]

    Dhar A 2008 Adv. Phys. 57 457Google Scholar

    [29]

    Wang L, Hu B, Li B 2012 Phys. Rev. E 86 040101Google Scholar

    [30]

    Xu X, Chen J, Li B 2016 J. Phys. Condens. Matter 28 483001Google Scholar

    [31]

    Lepri S, Livi R, Politi A 2005 Chaos Interdiscip. J. Nonlinear Sci. 15 015118Google Scholar

    [32]

    Yang N, Li N, Wang L, Li B 2007 Phys. Rev. B 76 020301Google Scholar

    [33]

    Li N, Li B, Flach S 2010 Phys. Rev. Lett. 105 054102Google Scholar

    [34]

    Liu S, Hänggi P, Li N, Ren J, Li B 2014 Phys. Rev. Lett. 112 040601Google Scholar

    [35]

    Benenti G, Lepri S, Livi R 2020 Front. Phys. 8 292Google Scholar

    [36]

    Lepri S, Livi R, Politi A 2020 Phys. Rev. Lett. 125 040604Google Scholar

    [37]

    Wang M, Yang N, Guo Z Y 2011 J. Appl. Phys. 110 064310Google Scholar

    [38]

    Maruyama S 2002 Phys. B Condens. Matter 323 193Google Scholar

    [39]

    Zhang G, Li B 2005 J. Chem. Phys. 123 114714Google Scholar

    [40]

    Yang N, Zhang G, Li B 2010 Nano Today 5 85Google Scholar

    [41]

    Wang M, Shan X, Yang N 2012 Phys. Lett. A 376 3514Google Scholar

    [42]

    Yang L, Tao Y, Zhu Y, Akter M, Wang K, Pan Z, Zhao Y, Zhang Q, Xu Y Q, Chen R, Xu T T, Chen Y, Mao Z, Li D 2021 Nat. Nanotechnol. 16 764Google Scholar

    [43]

    Maruyama S 2003 Microscale Thermophys. Eng. 7 41Google Scholar

    [44]

    Lepri S 2000 Eur. Phys. J. B 18 441Google Scholar

    [45]

    Wang M, Guo Z-Y 2010 Phys. Lett. A 374 4312Google Scholar

    [46]

    Majee A K, Aksamija Z 2016 Phys. Rev. B 93 235423Google Scholar

    [47]

    Chang C W, Okawa D, Garcia H, Majumdar A, Zettl A 2008 Phys. Rev. Lett. 101 075903Google Scholar

    [48]

    Lee V, Wu C H, Lou Z X, Lee W L, Chang C W 2017 Phys. Rev. Lett. 118 135901Google Scholar

    [49]

    Gu X, Wei Y, Yin X, Li B, Yang R 2018 Rev. Mod. Phys. 90 041002Google Scholar

    [50]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [51]

    Lindsay L, Broido D A, Mingo N 2010 Phys. Rev. B 82 115427Google Scholar

    [52]

    Lindsay L, Li W, Carrete J, Mingo N, Broido D A, Reinecke T L 2014 Phys. Rev. B 89 155426Google Scholar

    [53]

    Nika D L, Ghosh S, Pokatilov E P, Balandin A A 2009 Appl. Phys. Lett. 94 203103Google Scholar

    [54]

    Bonini N, Garg J, Marzari N 2012 Nano Lett. 12 2673Google Scholar

    [55]

    Feng T, Ruan X, Ye Z, Cao B 2015 Phys. Rev. B 91 224301Google Scholar

    [56]

    Feng T, Ruan X 2018 Phys. Rev. B 97 045202Google Scholar

    [57]

    Xu X, Pereira L F C, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T L, Hong B H, Loh K P, Donadio D, Li B, Özyilmaz B 2014 Nat. Commun. 5 3689Google Scholar

    [58]

    Li W, Carrete J, Mingo N 2013 Appl. Phys. Lett. 103 253103Google Scholar

    [59]

    Zhu L, Zhang G, Li B 2014 Phys. Rev. B 90 214302Google Scholar

    [60]

    Liu S, Xu X F, Xie R G, Zhang G, Li B W 2012 Eur. Phys. J. B 85 337Google Scholar

    [61]

    Park M, Lee S C, Kim Y S 2013 J. Appl. Phys. 114 053506Google Scholar

    [62]

    Barbarino G, Melis C, Colombo L 2015 Phys. Rev. B 91 035416Google Scholar

    [63]

    Li Q Y, Takahashi K, Zhang X 2017 Phys. Rev. Lett. 119 179601Google Scholar

    [64]

    Barbalinardo G, Chen Z, Dong H, Fan Z, Donadio D 2021 Phys. Rev. Lett. 127 025902Google Scholar

    [65]

    Lu Z, Shi J, Ruan X 2019 J. Appl. Phys. 125 085107Google Scholar

    [66]

    Yang N, Hu S, Ma D, Lu T, Li B 2015 Sci. Rep. 5 14878Google Scholar

    [67]

    Guo Y, Wang M 2017 Phys. Rev. B 96 134312Google Scholar

    [68]

    Zhang C, Guo Z, Chen S 2019 Int. J. Heat Mass Transf. 130 1366Google Scholar

    [69]

    Yang J, Yang Y, Waltermire S W, Wu X, Zhang H, Gutu T, Jiang Y, Chen Y, Zinn A A, Prasher R, Xu T T, Li D 2012 Nat. Nanotechnol. 7 91Google Scholar

    [70]

    Hopkins P E 2013 ISRN Mech. Eng. 2013 1Google Scholar

    [71]

    Xiang R, Inoue T, Zheng Y, Kumamoto A, Qian Y, Sato Y, Liu M, Tang D, Gokhale D, Guo J, Hisama K, Yotsumoto S, Ogamoto T, Arai H, Kobayashi Y, Zhang H, Hou B, Anisimov A, Maruyama M, Miyata Y, Okada S, Chiashi S, Li Y, Kong J, Kauppinen E I, Ikuhara Y, Suenaga K, Maruyama S 2020 Science 367 537Google Scholar

    [72]

    Zhang H, Xiong S, Wang H, Volz S, Ni Y 2019 EPL Europhys. Lett. 125 46001Google Scholar

    [73]

    Tian Z, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304Google Scholar

    [74]

    Yang Y, Chen H, Wang H, Li N, Zhang L 2018 Phys. Rev. E 98 042131Google Scholar

    [75]

    Ju S, Shiga T, Feng L, Hou Z, Tsuda K, Shiomi J 2017 Phys. Rev. X 7 021024Google Scholar

    [76]

    Feng W, Yu X, Wang Y, Ma D, Sun Z, Deng C, Yang N 2019 Phys. Chem. Chem. Phys. 21 25072Google Scholar

    [77]

    Xiong Y, Yu X, Huang Y, Yang J, Li L, Yang N, Xu D 2019 Mater. Today Phys. 11 100139Google Scholar

    [78]

    Ni Z, Wang Y, Yu T, You Y, Shen Z 2008 Phys. Rev. B 77 235403Google Scholar

    [79]

    Feng J, Qi L, Huang J Y, Li J 2009 Phys. Rev. B 80 165407Google Scholar

    [80]

    Kim K, Lee Z, Malone B D, Chan K T, Alemán B, Regan W, Gannett W, Crommie M F, Cohen M L, Zettl A 2011 Phys. Rev. B 83 245433Google Scholar

    [81]

    Prada E, San-Jose P, Brey L 2010 Phys. Rev. Lett. 105 106802Google Scholar

    [82]

    Rainis D, Taddei F, Polini M, León G, Guinea F, Fal’ko V I 2011 Phys. Rev. B 83 165403Google Scholar

    [83]

    Yang N, Ni X, Jiang J W, Li B 2012 Appl. Phys. Lett. 100 093107Google Scholar

    [84]

    Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103Google Scholar

    [85]

    Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X, Chen K Q 2021 Appl. Phys. Lett. 119 063503Google Scholar

    [86]

    Deng C, Yu X, Huang X, Yang N 2017 J. Heat Transf. 139 054504Google Scholar

    [87]

    Song H, Liu J, Liu B, Wu J, Cheng H M, Kang F 2018 Joule 2 442Google Scholar

    [88]

    Zhu X L, Yang H, Zhou W X, Wang B, Xu N, Xie G 2020 ACS Appl. Mater. Interfaces 12 36102Google Scholar

    [89]

    Xie G, Ju Z, Zhou K, Wei X, Guo Z, Cai Y, Zhang G 2018 npj Comput. Mater. 4 21Google Scholar

    [90]

    Xu K, Deng S, Liang T, Cao X, Han M, Zeng X, Zhang Z, Yang N, Wu J 2022 Nanoscale 14 3078Google Scholar

  • [1] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [2] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211857
    [3] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [4] 刘英光, 边永庆, 韩中合. 包含倾斜晶界的双晶ZnO的热输运行为. 物理学报, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [5] 霍龙桦, 谢国锋. 表面低配位原子对声子的散射机制. 物理学报, 2019, 68(8): 086501. doi: 10.7498/aps.68.20190194
    [6] 刘英光, 张士兵, 韩中合, 赵豫晋. 纳晶铜晶粒尺寸对热导率的影响. 物理学报, 2016, 65(10): 104401. doi: 10.7498/aps.65.104401
    [7] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [8] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [9] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正. 物理学报, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [10] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [11] 张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴. 纳米结构碲化铋合金的制备及电热输运特性. 物理学报, 2012, 61(4): 047201. doi: 10.7498/aps.61.047201
    [12] 金蔚, 惠宁菊, 屈世显. 螺旋纳米带中的声子输运. 物理学报, 2011, 60(1): 016301. doi: 10.7498/aps.60.016301
    [13] 许路加, 胡明, 杨海波, 杨孟琳, 张洁. 基于微结构参数建模的多孔硅绝热层热导率研究. 物理学报, 2010, 59(12): 8794-8800. doi: 10.7498/aps.59.8794
    [14] 刘铖铖, 曹全喜. Y3Al5O12的热输运性质的第一性原理研究. 物理学报, 2010, 59(4): 2697-2702. doi: 10.7498/aps.59.2697
    [15] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究. 物理学报, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [16] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运. 物理学报, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [17] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [18] 唐黎明, 王 艳, 王 丹, 王玲玲. 边界条件对介电量子波导中声子输运性质的影响. 物理学报, 2007, 56(1): 437-442. doi: 10.7498/aps.56.437
    [19] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟. 物理学报, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [20] 吴柏枚, 李 波, 杨东升, 郑卫华, 李世燕, 曹烈兆, 陈仙辉. 新型超导体MgB2和MgCNi3热、电输运性质研究. 物理学报, 2003, 52(12): 3150-3154. doi: 10.7498/aps.52.3150
计量
  • 文章访问数:  6980
  • PDF下载量:  364
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 修回日期:  2022-02-08
  • 上网日期:  2022-03-01
  • 刊出日期:  2022-04-20

/

返回文章
返回