搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳晶铜晶粒尺寸对热导率的影响

刘英光 张士兵 韩中合 赵豫晋

引用本文:
Citation:

纳晶铜晶粒尺寸对热导率的影响

刘英光, 张士兵, 韩中合, 赵豫晋

Influence of grain size on the thermal conduction of nanocrystalline copper

Liu Ying-Guang, Zhang Shi-Bing, Han Zhong-He, Zhao Yu-Jin
PDF
导出引用
  • 用热压烧结法制备得到纳晶铜块体. 用激光法测定了不同温度下制备得到的纳晶铜块体的热导率, 并建立卡皮查热阻模型对样品热导率进行模拟. 通过对比, 模拟结果与实验数据基本一致. 随着热压烧结温度的升高, 纳晶铜晶粒尺寸也随之增大. 在900和700 ℃其热导率分别达到了最大和最小值且所对应的热导率分别为200.63和233.37 Wm-1K-1, 各占粗晶铜块体热导率的53.4%和60.6%. 验证了纳晶铜热导率在一定的晶粒尺寸范围内具有尺寸效应, 随着晶粒尺寸的减小, 热导率逐渐减小.
    Naocrystalline (nc) material shows lower thermal conductivity than its coarse grain counterpart, which restricts its engineering applications. In order to study the effects of grain size and grain boundary on the thermal conductivity of nc material, nc copper is prepared by the high pressure sintering method. The pure nc Cu powder is used as the starting material, and the high pressure sintering experiment is carried out under a DS614 MN cubic press. Prior to the high pressure sintering experiment, the Cu powders are first pre-compressed into cylinders, then they are compressed under 5 GPa at temperatures ranging from 700 to 900 ℃ for 30 min. The grain size and micro-structural characteristics are investigated by the scanning electron microscope (SEM) and X-ray diffraction (XRD). The results show that the sintered Cu bulk material can achieve nearly full densification with a relative density of 99.98% and the grain growth of the Cu particles is effectively inhibited. The thermal conductivity measurement is performed by NETZSCH LFA-427 at 300 K and 45% RH. The test results show that the thermal conductivity of nc copper is lower than that of its coarse grain counterpart, and the thermal conductivity increases with grain size increasing. For example, as the grain size increases from 390 to 715 nm, the corresponding thermal conductivity increases from 200.63 to 233.37 Wm-1K-1, which are 53.4% and 60.6% of the thermal conductivity of the coarse grain copper, respectively. For a better understanding of the effects of grain boundary and size on the thermal conductivity of nc material, a simple modified model, with special emphasis on the contributions of electron and phonon conduction, is presented by incorporating the concept of the Kapitza resistance into an effective medium approach. The theoretical calculations are in good agreement with our experimental results. The combination of experimental results and theoretical calculations concludes that the thermal conductivity of nc material is weakened mainly by two factors: the grain boundary-electron (phonon) scattering on the grain boundary and the electron (phonon)-electron (phonon) scattering in the grain interior. That is to say, the thermal resistance of nc material can be divided into two parts: one is the intragranular thermal resistance from the grain, the other is the intergranular thermal resistance from the grain boundaries. As is well known, when the grain size decreases to a nano-range, the volume fraction of the grain boundary presents a sharp increase, and the intergranular thermal resistance from the grain boundaries becomes more important.
      通信作者: 刘英光, liuyingguang@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51301069)、河北省自然科学基金(批准号:E2014502073)和中央高校基本科研究业务费(批准号:2014MS114)资助的课题.
      Corresponding author: Liu Ying-Guang, liuyingguang@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51301069), the Natural Science Foundation of Hebei Province, China (Grant No. E2014502073), and the Fundamental Research Fund for the Central Universities, China (Grant No. 2014MS114).
    [1]

    Bai X M, Zhang Y F, Tonks M R 2015 Acta Mater. 85 95

    [2]

    Wang S, Brooks I, McCrea J L, Palumbo G, Cingara G, Erb U 2011 Adv. Mater. Res. 409 561

    [3]

    Li Q H, Chen S S, Zeng J H 2013 Chin. Phys. B 22 120204

    [4]

    Benkassem S, Capolungo L, Cherkaoui M 2007 Acta Mater. 55 3563

    [5]

    Angadi M A, Watanabe T, Bodapati A, Xiao X C, Auciello O, Carlisle J A, Eastman J A, Keblinski P, Schelling P K, Phillpot S R 2006 J. Appl. Phys. 99 114301

    [6]

    Tritt T M, Subramanian M A 2006 Mater. Res. Soc. Bull. 31 188

    [7]

    Maldovan M 2011 J. Appl. Phys. 110 114310

    [8]

    Seo D, Ogawa K, Sakaguchi K, Miyamoto N, Tsuzuki Y 2012 Surf. Coat. Tech. 207 233

    [9]

    Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V, Kanatzidis M 2011 Nat. Chem. 3 160

    [10]

    Khader M M, Kumar S, Abbasbandy S 2013 Chin. Phys. B 22 110201

    [11]

    Chen G (translated by Zhou H C, Li B S, Huang Z F, Liu H B) 2014 Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Beijing: Tsinghua University Press) pp14-15 (in Chinese) [陈刚 著 (周怀春, 李冰水, 黄志峰, 刘华波 译) 2014 纳米尺度能量输运和转换: 对电子、分子、声子和光子的统一处理 (北京: 清华大学出版社)第14-15页]

    [12]

    Guo Z Y, Gao B Y, Zhu H Y, Zhang Q G 2007 Acta Phys. Sin. 56 3306 (in Chinese) [过曾元, 曹炳阳, 朱宏晔, 张清光 2007 物理学报 56 3306]

    [13]

    Yang H S, Bai G R, Thompson L J, Eastman J A 2002 Acta Mater. 50 2309

    [14]

    Hao Q 2012 J. Appl. Phys. 111 014309

    [15]

    Soyez G, Eastman J A, Thompson L J, Bai G R, Baldo P M, McCormick A W 2000 Appl. Phys. Lett. 77 1155

    [16]

    Hua C Y, Minnich A J 2014 Semicond. Sci. Tech. 29 1

    [17]

    Bux S K, Blair R G, Gognal P K, Lee H, Chen G, Dresselhaus M S, Kaner R B, Fleurial J P 2009 Adv. Funct. Mater. 19 2445

    [18]

    Joshi G, Lee H, Lan Y C, Wang X W, Zhu G H, Wang D Z, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z F 2008 Nano Lett. 8 4670

    [19]

    Nan C W, Birringer R 1998 Phys. Rev. B 57 8264

    [20]

    Yao W J, Cao B Y, Yun H M, Chen B M 2014 Nanoscale Res. Lett. 9 408

    [21]

    Dong H, Wen B, Melnik R 2014 Sci. Rep.-UK 4 7037

    [22]

    Chen X F, He D W, Wang F L, Zhang J, Li Y J, Fang L M, Lei L, Kou Z L 2009 Chin. J. High Pressure Phys. 23 98 (in Chinese) [陈晓芳, 贺端威, 王福龙, 张剑, 李拥军, 房雷鸣, 雷力, 寇自力 2009 高压物理学报 23 98]

    [23]

    Wang S, Brooks I, McCrea J L, Palumbo G, Cingara G, Erb U 2011 Adv. Mater. Res. 409 561

    [24]

    Jeng M S, Yang R G, David S, Chen G 2008 J. Heat Transfer 130 042410

    [25]

    Wang Z, Alaniz J E, Jang W, Garay J E, Dames C 2011 Nano Lett. 11 2206

    [26]

    Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese) [华钰超, 董源, 曹炳阳 2013 物理学报 62 244401]

    [27]

    Joshi A A, Majumdar A 1993 J. Appl. Phys. 74 31

    [28]

    Heino P, Ristolainen E 2003 Microelectron. J. 34 773

    [29]

    Han G Z, Guo Z Y 2007 Proc. Chin. Soc. Electrical Eng. 17 98 (in Chinese) [韩光泽, 过增元 2007 中国电机工程学报 17 98]

  • [1]

    Bai X M, Zhang Y F, Tonks M R 2015 Acta Mater. 85 95

    [2]

    Wang S, Brooks I, McCrea J L, Palumbo G, Cingara G, Erb U 2011 Adv. Mater. Res. 409 561

    [3]

    Li Q H, Chen S S, Zeng J H 2013 Chin. Phys. B 22 120204

    [4]

    Benkassem S, Capolungo L, Cherkaoui M 2007 Acta Mater. 55 3563

    [5]

    Angadi M A, Watanabe T, Bodapati A, Xiao X C, Auciello O, Carlisle J A, Eastman J A, Keblinski P, Schelling P K, Phillpot S R 2006 J. Appl. Phys. 99 114301

    [6]

    Tritt T M, Subramanian M A 2006 Mater. Res. Soc. Bull. 31 188

    [7]

    Maldovan M 2011 J. Appl. Phys. 110 114310

    [8]

    Seo D, Ogawa K, Sakaguchi K, Miyamoto N, Tsuzuki Y 2012 Surf. Coat. Tech. 207 233

    [9]

    Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V, Kanatzidis M 2011 Nat. Chem. 3 160

    [10]

    Khader M M, Kumar S, Abbasbandy S 2013 Chin. Phys. B 22 110201

    [11]

    Chen G (translated by Zhou H C, Li B S, Huang Z F, Liu H B) 2014 Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Beijing: Tsinghua University Press) pp14-15 (in Chinese) [陈刚 著 (周怀春, 李冰水, 黄志峰, 刘华波 译) 2014 纳米尺度能量输运和转换: 对电子、分子、声子和光子的统一处理 (北京: 清华大学出版社)第14-15页]

    [12]

    Guo Z Y, Gao B Y, Zhu H Y, Zhang Q G 2007 Acta Phys. Sin. 56 3306 (in Chinese) [过曾元, 曹炳阳, 朱宏晔, 张清光 2007 物理学报 56 3306]

    [13]

    Yang H S, Bai G R, Thompson L J, Eastman J A 2002 Acta Mater. 50 2309

    [14]

    Hao Q 2012 J. Appl. Phys. 111 014309

    [15]

    Soyez G, Eastman J A, Thompson L J, Bai G R, Baldo P M, McCormick A W 2000 Appl. Phys. Lett. 77 1155

    [16]

    Hua C Y, Minnich A J 2014 Semicond. Sci. Tech. 29 1

    [17]

    Bux S K, Blair R G, Gognal P K, Lee H, Chen G, Dresselhaus M S, Kaner R B, Fleurial J P 2009 Adv. Funct. Mater. 19 2445

    [18]

    Joshi G, Lee H, Lan Y C, Wang X W, Zhu G H, Wang D Z, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z F 2008 Nano Lett. 8 4670

    [19]

    Nan C W, Birringer R 1998 Phys. Rev. B 57 8264

    [20]

    Yao W J, Cao B Y, Yun H M, Chen B M 2014 Nanoscale Res. Lett. 9 408

    [21]

    Dong H, Wen B, Melnik R 2014 Sci. Rep.-UK 4 7037

    [22]

    Chen X F, He D W, Wang F L, Zhang J, Li Y J, Fang L M, Lei L, Kou Z L 2009 Chin. J. High Pressure Phys. 23 98 (in Chinese) [陈晓芳, 贺端威, 王福龙, 张剑, 李拥军, 房雷鸣, 雷力, 寇自力 2009 高压物理学报 23 98]

    [23]

    Wang S, Brooks I, McCrea J L, Palumbo G, Cingara G, Erb U 2011 Adv. Mater. Res. 409 561

    [24]

    Jeng M S, Yang R G, David S, Chen G 2008 J. Heat Transfer 130 042410

    [25]

    Wang Z, Alaniz J E, Jang W, Garay J E, Dames C 2011 Nano Lett. 11 2206

    [26]

    Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese) [华钰超, 董源, 曹炳阳 2013 物理学报 62 244401]

    [27]

    Joshi A A, Majumdar A 1993 J. Appl. Phys. 74 31

    [28]

    Heino P, Ristolainen E 2003 Microelectron. J. 34 773

    [29]

    Han G Z, Guo Z Y 2007 Proc. Chin. Soc. Electrical Eng. 17 98 (in Chinese) [韩光泽, 过增元 2007 中国电机工程学报 17 98]

  • [1] 刘雨, 田强, 王新艳, 关雪飞. 基于单向测量超声背散射系数的晶粒尺寸评价高效方法. 物理学报, 2024, 73(7): 074301. doi: 10.7498/aps.73.20231959
    [2] 张凤国, 赵福祺, 刘军, 何安民, 王裴. 延性金属层裂强度对温度、晶粒尺寸和加载应变率的依赖特性及其物理建模. 物理学报, 2022, 71(3): 034601. doi: 10.7498/aps.71.20210702
    [3] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [4] 张凤国. 延性金属层裂强度对温度、晶粒尺寸和加载应变率的依赖特性及其物理建模. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210702
    [5] 刘英光, 边永庆, 韩中合. 包含倾斜晶界的双晶ZnO的热输运行为. 物理学报, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [6] 李珊, 李雄兵, 宋永锋, 陈超. 考虑晶粒分布的多晶体材料超声散射统一理论. 物理学报, 2018, 67(23): 234301. doi: 10.7498/aps.67.20181751
    [7] 王鹏, 徐建刚, 张云光, 宋海洋. 晶粒尺寸对纳米多晶铁变形机制影响的模拟研究. 物理学报, 2016, 65(23): 236201. doi: 10.7498/aps.65.236201
    [8] 黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益. 硅基板和铜基板垂直结构GaN基LED变温变电流发光性能的研究. 物理学报, 2014, 63(21): 217806. doi: 10.7498/aps.63.217806
    [9] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正. 物理学报, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [10] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [11] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [12] 王静, 刘贵昌, 李红玲, 侯保荣. 铜基类金刚石膜功能梯度材料作为散热材料的研究. 物理学报, 2012, 61(5): 058102. doi: 10.7498/aps.61.058102
    [13] 杨卫明, 刘海顺, 敦超超, 赵玉成, 窦林名. Fe基纳米晶合金晶粒尺寸反常变化的物理机制. 物理学报, 2012, 61(10): 106802. doi: 10.7498/aps.61.106802
    [14] 王英龙, 张鹏程, 刘虹让, 刘保亭, 傅广生. 晶粒尺寸及衬底应力对铁电薄膜特性的影响. 物理学报, 2011, 60(7): 077702. doi: 10.7498/aps.60.077702
    [15] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运. 物理学报, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [16] 毛朝梁, 董显林, 王根水, 姚春华, 曹菲, 曹盛, 杨丽慧, 王永令. 晶粒尺寸对Ba0.70Sr0.30TiO3陶瓷介电性能的影响规律及机理研究. 物理学报, 2009, 58(8): 5784-5789. doi: 10.7498/aps.58.5784
    [17] 王浩, 刘国权, 栾军华, 岳景朝, 秦湘阁. 晶粒棱长、尺寸与拓扑学特征之间关系的Monte Carlo仿真研究. 物理学报, 2009, 58(13): 132-S136. doi: 10.7498/aps.58.132
    [18] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [19] 余柏林, 祁 琼, 唐新峰, 张清杰. 晶粒尺寸对CoSb3化合物热电性能的影响. 物理学报, 2005, 54(12): 5763-5768. doi: 10.7498/aps.54.5763
    [20] 李眉娟, 胡海云, 邢修三. 多晶体金属疲劳寿命随晶粒尺寸变化的理论研究. 物理学报, 2003, 52(8): 2092-2095. doi: 10.7498/aps.52.2092
计量
  • 文章访问数:  7376
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-17
  • 修回日期:  2016-02-06
  • 刊出日期:  2016-05-05

/

返回文章
返回