搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

包含倾斜晶界的双晶ZnO的热输运行为

刘英光 边永庆 韩中合

引用本文:
Citation:

包含倾斜晶界的双晶ZnO的热输运行为

刘英光, 边永庆, 韩中合

Heat transport behavior of bicrystal ZnO containing tilt grain boundary

Liu Ying-Guang, Bian Yong-Qing, Han Zhong-He
PDF
HTML
导出引用
  • 用嵌入位错线法和重合位置点阵法构建含有小角度和大角度倾斜角的双晶氧化锌纳米结构. 用非平衡分子动力学方法模拟双晶氧化锌在不同倾斜角度下的晶界能、卡皮查热阻, 并研究了样本长度和温度对卡皮查热阻和热导率的影响. 模拟结果表明, 晶界能在小角度区域随倾斜角线性增加, 而在大角度区域达到稳定, 与卡皮查热阻的变化趋势一致. 热导率随样本长度的增加而增加, 卡皮查热阻表现出相反的趋势. 然而随着温度的增加, 热导率和卡皮查热阻都减小. 通过比较含5.45°和38.94°晶界样本的声子态密度, 发现声子光学支对热传导的影响不大, 主要由声子声学支贡献, 大角度晶界对声子散射作用更强, 声学支波峰向低频率移动.
    Zinc oxide (ZnO), as a conventional semiconductor material, has excellent characteristics, such as piezoelectricity, photoelectricity, gas sensitivity, etc. With the improvement of nanopreparation technology, different types of nanostructrued ZnO compounds have appeared and their heat conductions have become a main research topic in nanodevices. In order to study the effects of grain boundary on the thermal properties of materials of this kind, bicrystal ZnO containing small-angle and high-angle grain boundaries are constructed by the embedded dislocation line and coincidence site lattice method. The variation of grain boundary energy with tilt angle is studied by the non-equilibrium molecular dynamics simulation. In addition, the dislocation density is calculated by using the Frank-Bilby formula. Our results show that the grain boundary energy and dislocation density increase with the increase of tilt angle in a small-angle region, and they tend to be stable in a high-angle region. The tilt angle of 36.86° is defined as the transition angle. The trend of the Kapitza resistance is the same as that of the grain boundary energy and satisfies the theoretical value from the extended Read-Shockley model. Furthermore, it is found that both the Kapitza resistance and thermal conductivity have a significant size effect. When the sample length is between 23.2 nm and 92.6 nm, the Kapitza resistance decreases sharply with the increase of the length and then tends to be stable. The thermal conductivity of the sample increases with length increasing, but is always less than that of the single crystal. At the same time, temperature is an important factor affecting the heat transport properties. The Kapitza resistance and thermal conductivity decrease with temperature increasing. At different temperatures, the Kapitza resistance of 38.94° grain boundary sample is greater than that of 5.45° grain boundary sample. In order to further explore the influence mechanism of grain boundary angle on heat conduction, the phonon state density of 5.45° and 38.94° grain boundary sample are calculated. The results indicate that the high-angle grain boundary has stronger scattering for acoustic branch phonons and the peak frequency becomes lower, whereas the optical branch ones have almost no effect on the heat conduction.
      通信作者: 刘英光, liuyingguang@ncepu.edu.cn
    • 基金项目: 国家级-基于雪崩电离的磁阻效应及其机理研究(51301069)
      Corresponding author: Liu Ying-Guang, liuyingguang@ncepu.edu.cn
    [1]

    Liu J, Jiang Y J 2010 Chin. Phys. B 19 116201

    [2]

    Zhang Z, Kang Z, Liao Q L, Zhang X M, Zhang Y 2017 Chin. Phys. B 26 118102Google Scholar

    [3]

    李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武 2018 物理学报 67 140701Google Scholar

    Li Y, Li J, Chen L L, Lian X X, Zhu J W 2018 Acta. Phys. Sin. 67 140701Google Scholar

    [4]

    Li J J, Chen Z M, Huang R, Miao Z Y, Cai L, Du Q P 2018 J. Environ. Sci. 73 78Google Scholar

    [5]

    He Q, Zhou Y J, Wang G F, Zheng B, Qi M, Li X J, Kong L H 2018 Appl. Nanosci. 8 2009

    [6]

    吴静静, 唐鑫, 龙飞, 唐碧玉 2017 物理学报 66 137101Google Scholar

    Wu J J, Tang X, Long F, Tang B Y 2017 Acta. Phys. Sin. 66 137101Google Scholar

    [7]

    Zhang Z Z, Chen J 2018 Chin. Phys. B 27 035101Google Scholar

    [8]

    El-Brolossy T A, Saber O, Ibrahim S S 2013 Chin. Phys. B 22 074401Google Scholar

    [9]

    Giri A, Niemela J P, Tynell T, Gaskins J T, Donovan B F, Karppinen M, Hopkins P E 2016 Phys. Rev. B 93 115310Google Scholar

    [10]

    Liang X, Shen L 2018 Acta. Mater. 148 100Google Scholar

    [11]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [12]

    Little W A, Can J 1959 Canadian J. Phys. 37 334

    [13]

    王琛, 宋海洋, 安敏荣, 2014 物理学报 66 046201Google Scholar

    Wang C, Song H Y, An M R 2014 Acta. Phys. Sin. 66 046201Google Scholar

    [14]

    Grimmer H 1976 Acta. Crystallogr. 32 783Google Scholar

    [15]

    Stukowski A 2010 Modell. Simul. Mater.Sci. 18 015012Google Scholar

    [16]

    Plimpton S J 1995 J. Comput. Phys. 117 1Google Scholar

    [17]

    Wunderlich W 1998 Phys. Status. Solidi. A 170 99Google Scholar

    [18]

    Tai K P, Lawrence A, Harmer M P, Dillon S J 2013 Appl. Phys. Lett. 102 034101Google Scholar

    [19]

    Liang X 2017 Phys. Rev. B 95 155313Google Scholar

    [20]

    Chen T Y, Chen D, Sencer B H, Shao L 2014 J. Nucl. Mater. 452 364Google Scholar

    [21]

    Watanabe T, Ni B, Phillpot S R, Schelling P K, Keblinski P 2007 J. Appl. Phys. 102 063503

    [22]

    Yang X M, Wu S H, Xu J X, Cao B Y, To A C 2018 Physica E 96 46Google Scholar

  • 图 1  含5.45°晶界(左)和38.94°晶界(右)的双晶ZnO结构

    Fig. 1.  Structures of the 5.45° grain boundary (GB) (left) and the 38.94° GB (right) in bicrystal ZnO.

    图 2  NEMD模拟计算热性质的示意图

    Fig. 2.  Schematic diagram of the NEMD model for calculating the thermal properties.

    图 3  晶界能和位错密度与倾斜角的关系

    Fig. 3.  The GB energy and dislocation density as a function of misorientation angle.

    图 4  卡皮查热阻与倾斜角的关系

    Fig. 4.  Kapitza resistance as a function of misorientation angle.

    图 5  300 K时卡皮查热阻与样本长度的关系

    Fig. 5.  Kapitza resistance as a function of sample length at 300 K.

    图 6  热导率与样本长度的关系

    Fig. 6.  Thermal conductivity as a function of sample length.

    图 7  5.45°和38.95°晶界结构的卡皮查热阻随温度的变化

    Fig. 7.  Temperature-dependent Kapitza resistance for the 5.45° and 38.94° GBs.

    图 8  5.45°和38.95°晶界结构的热导率随温度的变化

    Fig. 8.  Temperature-dependent thermal conductivity for the 5.45° and 38.94° GBs.

    图 9  5.45°和38.94°晶界结构的声子态密度比较

    Fig. 9.  Phonon density of states for the 5.45° and 38.94° GBs.

    表 1  对称倾斜角度与对应的Σ

    Table 1.  List of the symmetrical tilt angles and the corresponding Σ values.

    Tilt angle θ/(°)Σ
    5.45221
    11.42101
    20.02149
    25.9889
    30.5165
    36.865
    38.949
    53.135
    60.03
    67.3813
    下载: 导出CSV
  • [1]

    Liu J, Jiang Y J 2010 Chin. Phys. B 19 116201

    [2]

    Zhang Z, Kang Z, Liao Q L, Zhang X M, Zhang Y 2017 Chin. Phys. B 26 118102Google Scholar

    [3]

    李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武 2018 物理学报 67 140701Google Scholar

    Li Y, Li J, Chen L L, Lian X X, Zhu J W 2018 Acta. Phys. Sin. 67 140701Google Scholar

    [4]

    Li J J, Chen Z M, Huang R, Miao Z Y, Cai L, Du Q P 2018 J. Environ. Sci. 73 78Google Scholar

    [5]

    He Q, Zhou Y J, Wang G F, Zheng B, Qi M, Li X J, Kong L H 2018 Appl. Nanosci. 8 2009

    [6]

    吴静静, 唐鑫, 龙飞, 唐碧玉 2017 物理学报 66 137101Google Scholar

    Wu J J, Tang X, Long F, Tang B Y 2017 Acta. Phys. Sin. 66 137101Google Scholar

    [7]

    Zhang Z Z, Chen J 2018 Chin. Phys. B 27 035101Google Scholar

    [8]

    El-Brolossy T A, Saber O, Ibrahim S S 2013 Chin. Phys. B 22 074401Google Scholar

    [9]

    Giri A, Niemela J P, Tynell T, Gaskins J T, Donovan B F, Karppinen M, Hopkins P E 2016 Phys. Rev. B 93 115310Google Scholar

    [10]

    Liang X, Shen L 2018 Acta. Mater. 148 100Google Scholar

    [11]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [12]

    Little W A, Can J 1959 Canadian J. Phys. 37 334

    [13]

    王琛, 宋海洋, 安敏荣, 2014 物理学报 66 046201Google Scholar

    Wang C, Song H Y, An M R 2014 Acta. Phys. Sin. 66 046201Google Scholar

    [14]

    Grimmer H 1976 Acta. Crystallogr. 32 783Google Scholar

    [15]

    Stukowski A 2010 Modell. Simul. Mater.Sci. 18 015012Google Scholar

    [16]

    Plimpton S J 1995 J. Comput. Phys. 117 1Google Scholar

    [17]

    Wunderlich W 1998 Phys. Status. Solidi. A 170 99Google Scholar

    [18]

    Tai K P, Lawrence A, Harmer M P, Dillon S J 2013 Appl. Phys. Lett. 102 034101Google Scholar

    [19]

    Liang X 2017 Phys. Rev. B 95 155313Google Scholar

    [20]

    Chen T Y, Chen D, Sencer B H, Shao L 2014 J. Nucl. Mater. 452 364Google Scholar

    [21]

    Watanabe T, Ni B, Phillpot S R, Schelling P K, Keblinski P 2007 J. Appl. Phys. 102 063503

    [22]

    Yang X M, Wu S H, Xu J X, Cao B Y, To A C 2018 Physica E 96 46Google Scholar

  • [1] 徐浩哲, 徐象繁. Al2O3基导热聚合物中的热逾渗网络. 物理学报, 2023, 72(2): 024401. doi: 10.7498/aps.72.20221400
    [2] 安盟, 孙旭辉, 陈东升, 杨诺. 石墨烯基复合热界面材料导热性能研究进展. 物理学报, 2022, 71(16): 166501. doi: 10.7498/aps.71.20220306
    [3] 曹炳阳, 张梓彤. 热智能材料及其在空间热控中的应用. 物理学报, 2022, 71(1): 014401. doi: 10.7498/aps.71.20211889
    [4] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [5] 邵春瑞, 李海洋, 王军, 夏国栋. 多孔结构体材料热整流效应. 物理学报, 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [6] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211857
    [7] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [8] 刘英光, 任国梁, 郝将帅, 张静文, 薛新强. 含有倾斜界面硅/锗超晶格的导热性能. 物理学报, 2021, 70(11): 113101. doi: 10.7498/aps.70.20201807
    [9] 刘英光, 张士兵, 韩中合, 赵豫晋. 纳晶铜晶粒尺寸对热导率的影响. 物理学报, 2016, 65(10): 104401. doi: 10.7498/aps.65.104401
    [10] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [11] 李屹同, 沈谅平, 王浩, 汪汉斌. 水基ZnO纳米流体电导和热导性能研究 . 物理学报, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [12] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正. 物理学报, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [13] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [14] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [15] 伍君博, 唐新桂, 贾振华, 陈东阁, 蒋艳平, 刘秋香. 钇和镧掺杂氧化铝陶瓷的热导及其介电弛豫特性研究. 物理学报, 2012, 61(20): 207702. doi: 10.7498/aps.61.207702
    [16] 刘铖铖, 曹全喜. Y3Al5O12的热输运性质的第一性原理研究. 物理学报, 2010, 59(4): 2697-2702. doi: 10.7498/aps.59.2697
    [17] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运. 物理学报, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [18] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [19] 吴柏枚, 李 波, 杨东升, 郑卫华, 李世燕, 曹烈兆, 陈仙辉. 新型超导体MgB2和MgCNi3热、电输运性质研究. 物理学报, 2003, 52(12): 3150-3154. doi: 10.7498/aps.52.3150
    [20] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 樊 荣, 陈仙辉, 曹烈兆. 双能隙超导体MgB2的热导. 物理学报, 2003, 52(3): 683-686. doi: 10.7498/aps.52.683
计量
  • 文章访问数:  5529
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-25
  • 修回日期:  2019-11-28
  • 刊出日期:  2020-02-05

/

返回文章
返回