搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑界面散射的金属纳米线热导率修正

李静 冯妍卉 张欣欣 黄丛亮 杨穆

引用本文:
Citation:

考虑界面散射的金属纳米线热导率修正

李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆

Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering

Li Jing, Feng Yan-Hui, Zhang Xin-Xin, Huang Cong-Liang, Yang Mu
PDF
导出引用
  • 理论分析了声子和电子输运对Cu, Ag金属纳米线热导率的贡献. 采用镶嵌原子作用势模型描述纳米尺寸下金属原子间的相互作用, 应用平衡分子动力学方法和Green-Kubo函数模拟了金属纳米线的声子热导率; 采用玻尔兹曼输运理论和Wiedemann-Franz定律计算电子热导率; 并通过散射失配模型和Mayadas-Shatzkes模型引入晶界散射的影响. 在此基础上, 考察分析了纳米线尺度和温度的影响. 研究结果表明: Cu, Ag纳米线热导率的变化规律相似; 电子输运对金属纳米线的导热占主导地位, 而声子热导率的贡献也不容忽视; 晶界散射导致热导率减小, 尤其对电子热导率作用显著; 纳米线总热导率随着温度的升高而降低; 随着截面尺寸减小而减小, 但声子热导率所占份额有所增加.
    The contributions of phonon and electron transport to the thermal conductivities of Cu and Ag nanowires are studied theoretically. The effects of surface and grain boundary scatterings are involved. The embeded atom method is employed to express the interatomic potential of nanowires. While the molecular dynamic simulation and Green-Kubo formulation are used to obtain the lattice thermal conductivity, a model derived from Boltzmann transport equation and the Wiedemann-Franz relation are used to calculate electronic thermal conductivity. In addition, diffuse mismatch model is used to calculate thermal resistance of grain boundary to modify the lattice thermal conductivity, meanwhile, Mayadas-Shatzkes model is used to consider the influence of grain boundary scattering on the electronic thermal conductivity. By coupling the lattice and electronic thermal conductivity, the effective thermal conductivity of nanowire is obtained. On this base, the influences of size and temperature are analyzed. It turns out that Cu and Ag nanowires have a similar tendency in the thermal conductivity. The contribution of electron transport to the thermal conductivity of nanowire is dominated, but the contribution of phonon transport cannot be ignored on the nanoscale. The thermal conductivity of nanowire decreases due to the grain boundary scattering. And it decreases with temperature increasing or size decreasing. The contribution of phonon transport becomes more important in the case of smaller size.
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB720404);国家自然科学基金重点项目(批准号:50836001)和中央高校基本科研业务费专项资金(批准号:FRF-AS-12-002,FRF-TP-11-001B)资助的课题.
    • Funds: Project supported by National Basic Research Program of China(Grant No. 2012CB720404), Key Program of the National Natural Science Foundation of China (Grant No. 50836001) and Fundamental Research Funds for the Central Universities, China(Grant No. FRF-AS-12-002, FRF-TP-11-001B).
    [1]

    Stewart D A, Norris P M 2000 Microscale Therm. Eng. 4 89

    [2]

    Lu X, Shen W Z, Chu J H 2002 J. Appl. Phys. 91 1542

    [3]

    Stojanovic N, Maithripala D H S, Berg J M, Holtz M 2010 Phys. Rev. B 82 075418

    [4]

    Wu D M 2007 Fundamentals of Solid State Physics (Beijing: Higher Education Press) p5 (in Chinese) [吴代鸣 2007 固体物理基础 (北京: 高等教育出版社) 第5页]

    [5]

    Broido D A, Reinecke T L 2004 Phys. Rev. B 70 081310

    [6]

    Glavin B A 2001 Phys. Rev. Lett. 86 4318

    [7]

    Li D Y, Wu Y Y, Fan R, Yang P D, Majumdar A 2003 Appl. Phys. Lett. 83 3186

    [8]

    Zheng X J, Zhu L L, Zhou Y H 2005 Appl. Phys. Lett. 87 242101

    [9]

    Wang T, Luo Z Y, Guo S S, Cen K F 2007 J. Zhejiang Univ. 41 514 (in Chinese) [王涛, 骆仲泱, 郭顺松, 岑可法 2007 浙江大学学报 41 514]

    [10]

    Nolas G S, Lyon H B, Cohn J L, Tritt T M, Slack G A 1997 16th International Conference on Thermoelectrics, University of Texas, August 26-29 1997 p321

    [11]

    Yang J, Morelli D T, Meisner G P, Chen W, Dyck J S, Uher C 2003 Phys. Rev. B 67 165207

    [12]

    Nolas G S, Yang J, Takizawa H 2004 Appl. Phys. Lett. 84 5210

    [13]

    Ju S, Liang X 2010 J. Appl. Phys. 108 104307

    [14]

    Maiti A, Mahan G D, Pantelides S T 1997 Solid State Commun. 102 517

    [15]

    Crocombette J, Gelebart L 2009 J. Appl. Phys. 106 083520

    [16]

    Schelling P K, Phillpot S R, Keblinski P 2004 J. Appl. Phys. 95 6082

    [17]

    Ziman J M 1960 Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford: Oxford University Press) pp460-469

    [18]

    Dames C, Chen G 2004 J. Appl. Phys. 95 682

    [19]

    Chen G 1998 Phys. Rev. B 57 14960

    [20]

    Lu X, Shen W Z, Chu J H 2002 J. Appl. Phys. 91 1542

    [21]

    Doyama M, Kogure Y 1999 Comp. Mater. Sci. 14 80

    [22]

    Patrick K S, Simon R P, Pawel K 2002 Phys. Rev. B 65 144306

    [23]

    Feng B, Li Z X, Zhang X 2009 J. Appl. Phys. 105 104315

    [24]

    Heino P, Ristolainen E 2003 Microelectr. J. 34 773

    [25]

    Tritt T M 2004 Thermal Conductivity: Theory, Properties, and Applications (New York: Kluwer)

    [26]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605

    [27]

    Maitrejean S, Gers R, Mourier T, Toffoli A, Passemard G 2006 Microelectron. Eng. 83 2396

    [28]

    Fuchs K, Wills H H 1938 Proc. Cambridge Philos. Soc. 34 100

    [29]

    Sondheimer E H 1952 Adv. Phys. 1 1

    [30]

    Chambers R G 1950 Proc. R. Soc. 202 378

    [31]

    Yuan S P, Jiang P X 2006 Int. J. Thermophys. 27 581

    [32]

    Lu X 2009 J. Appl. Phys. 105 094301

    [33]

    Ponomareva I, Srivastava D, Menon M 2007 Nano Lett. 7 1155

  • [1]

    Stewart D A, Norris P M 2000 Microscale Therm. Eng. 4 89

    [2]

    Lu X, Shen W Z, Chu J H 2002 J. Appl. Phys. 91 1542

    [3]

    Stojanovic N, Maithripala D H S, Berg J M, Holtz M 2010 Phys. Rev. B 82 075418

    [4]

    Wu D M 2007 Fundamentals of Solid State Physics (Beijing: Higher Education Press) p5 (in Chinese) [吴代鸣 2007 固体物理基础 (北京: 高等教育出版社) 第5页]

    [5]

    Broido D A, Reinecke T L 2004 Phys. Rev. B 70 081310

    [6]

    Glavin B A 2001 Phys. Rev. Lett. 86 4318

    [7]

    Li D Y, Wu Y Y, Fan R, Yang P D, Majumdar A 2003 Appl. Phys. Lett. 83 3186

    [8]

    Zheng X J, Zhu L L, Zhou Y H 2005 Appl. Phys. Lett. 87 242101

    [9]

    Wang T, Luo Z Y, Guo S S, Cen K F 2007 J. Zhejiang Univ. 41 514 (in Chinese) [王涛, 骆仲泱, 郭顺松, 岑可法 2007 浙江大学学报 41 514]

    [10]

    Nolas G S, Lyon H B, Cohn J L, Tritt T M, Slack G A 1997 16th International Conference on Thermoelectrics, University of Texas, August 26-29 1997 p321

    [11]

    Yang J, Morelli D T, Meisner G P, Chen W, Dyck J S, Uher C 2003 Phys. Rev. B 67 165207

    [12]

    Nolas G S, Yang J, Takizawa H 2004 Appl. Phys. Lett. 84 5210

    [13]

    Ju S, Liang X 2010 J. Appl. Phys. 108 104307

    [14]

    Maiti A, Mahan G D, Pantelides S T 1997 Solid State Commun. 102 517

    [15]

    Crocombette J, Gelebart L 2009 J. Appl. Phys. 106 083520

    [16]

    Schelling P K, Phillpot S R, Keblinski P 2004 J. Appl. Phys. 95 6082

    [17]

    Ziman J M 1960 Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford: Oxford University Press) pp460-469

    [18]

    Dames C, Chen G 2004 J. Appl. Phys. 95 682

    [19]

    Chen G 1998 Phys. Rev. B 57 14960

    [20]

    Lu X, Shen W Z, Chu J H 2002 J. Appl. Phys. 91 1542

    [21]

    Doyama M, Kogure Y 1999 Comp. Mater. Sci. 14 80

    [22]

    Patrick K S, Simon R P, Pawel K 2002 Phys. Rev. B 65 144306

    [23]

    Feng B, Li Z X, Zhang X 2009 J. Appl. Phys. 105 104315

    [24]

    Heino P, Ristolainen E 2003 Microelectr. J. 34 773

    [25]

    Tritt T M 2004 Thermal Conductivity: Theory, Properties, and Applications (New York: Kluwer)

    [26]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605

    [27]

    Maitrejean S, Gers R, Mourier T, Toffoli A, Passemard G 2006 Microelectron. Eng. 83 2396

    [28]

    Fuchs K, Wills H H 1938 Proc. Cambridge Philos. Soc. 34 100

    [29]

    Sondheimer E H 1952 Adv. Phys. 1 1

    [30]

    Chambers R G 1950 Proc. R. Soc. 202 378

    [31]

    Yuan S P, Jiang P X 2006 Int. J. Thermophys. 27 581

    [32]

    Lu X 2009 J. Appl. Phys. 105 094301

    [33]

    Ponomareva I, Srivastava D, Menon M 2007 Nano Lett. 7 1155

  • [1] 尚帅朋, 陆勇俊, 王峰会. 表面效应对纳米线电极屈曲失稳的影响. 物理学报, 2022, 71(3): 033101. doi: 10.7498/aps.71.20211864
    [2] 刘英光, 边永庆, 韩中合. 包含倾斜晶界的双晶ZnO的热输运行为. 物理学报, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [3] 霍龙桦, 谢国锋. 表面低配位原子对声子的散射机制. 物理学报, 2019, 68(8): 086501. doi: 10.7498/aps.68.20190194
    [4] 刘英光, 张士兵, 韩中合, 赵豫晋. 纳晶铜晶粒尺寸对热导率的影响. 物理学报, 2016, 65(10): 104401. doi: 10.7498/aps.65.104401
    [5] 贺慧芳, 陈志权. 用正电子湮没研究纳米碲化铋的缺陷及其对热导率的影响. 物理学报, 2015, 64(20): 207804. doi: 10.7498/aps.64.207804
    [6] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [7] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [8] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [9] 唐晶晶, 冯妍卉, 李威, 崔柳, 张欣欣. 碳纳米管电缆式复合材料的热导率. 物理学报, 2013, 62(22): 226102. doi: 10.7498/aps.62.226102
    [10] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [11] 李威, 冯妍卉, 陈阳, 张欣欣. 碳纳米管中点缺陷对热导率影响的正交试验模拟分析. 物理学报, 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [12] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [13] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究 . 物理学报, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [14] 曹炳阳, 董若宇, 孔杰, 陈恒, 徐雁, 容启亮, 蔡岸. 纳米孔模板浸润法制备聚乙烯纳米线阵列的热导率的实验研究. 物理学报, 2012, 61(4): 046501. doi: 10.7498/aps.61.046501
    [15] 王宁, 董刚, 杨银堂, 陈斌, 王凤娟, 张岩. 考虑晶粒尺寸效应的超薄(1050 nm) Cu电阻率模型研究. 物理学报, 2012, 61(1): 016802. doi: 10.7498/aps.61.016802
    [16] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [17] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究. 物理学报, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [18] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运. 物理学报, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [19] 侯海虹, 孙喜莲, 田光磊, 吴师岗, 马小凤, 邵建达, 范正修. 利用总积分散射仪对光学薄膜表面散射特性的研究. 物理学报, 2009, 58(9): 6425-6429. doi: 10.7498/aps.58.6425
    [20] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
计量
  • 文章访问数:  3827
  • PDF下载量:  572
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-04
  • 修回日期:  2013-06-05
  • 刊出日期:  2013-09-05

考虑界面散射的金属纳米线热导率修正

  • 1. 北京科技大学机械工程学院, 北京 100083;
  • 2. 北京科技大学材料科学与工程学院, 北京 100083
    基金项目: 国家重点基础研究发展计划(批准号:2012CB720404);国家自然科学基金重点项目(批准号:50836001)和中央高校基本科研业务费专项资金(批准号:FRF-AS-12-002,FRF-TP-11-001B)资助的课题.

摘要: 理论分析了声子和电子输运对Cu, Ag金属纳米线热导率的贡献. 采用镶嵌原子作用势模型描述纳米尺寸下金属原子间的相互作用, 应用平衡分子动力学方法和Green-Kubo函数模拟了金属纳米线的声子热导率; 采用玻尔兹曼输运理论和Wiedemann-Franz定律计算电子热导率; 并通过散射失配模型和Mayadas-Shatzkes模型引入晶界散射的影响. 在此基础上, 考察分析了纳米线尺度和温度的影响. 研究结果表明: Cu, Ag纳米线热导率的变化规律相似; 电子输运对金属纳米线的导热占主导地位, 而声子热导率的贡献也不容忽视; 晶界散射导致热导率减小, 尤其对电子热导率作用显著; 纳米线总热导率随着温度的升高而降低; 随着截面尺寸减小而减小, 但声子热导率所占份额有所增加.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回