搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面效应对纳米线电极屈曲失稳的影响

尚帅朋 陆勇俊 王峰会

引用本文:
Citation:

表面效应对纳米线电极屈曲失稳的影响

尚帅朋, 陆勇俊, 王峰会

Surface effects on buckling of nanowire electrode

Shang Shuai-Peng, Lu Yong-Jun, Wang Feng-Hui
PDF
HTML
导出引用
  • 纳米线电极在充/放电过程中引起电极的屈曲失稳行为可能会对结构造成力学损伤. 本文针对纳米线电极结构, 建立了包含锂扩散、应力、浓度影响弹性模量的多场耦合理论模型. 基于构建的模型, 研究了表面效应对纳米线电极屈曲失稳的影响. 结果表明表面效应能够提高纳米线电极的抗屈曲性, 延迟纳米线电极的临界屈曲时间. 同时, 表面效应的影响表现出半径尺寸和长细比的依赖性, 即随着电极半径尺寸的增大而减小, 而随着电极长细比的增大而增大. 此外, 模型还显示, 在有表面效应的条件下, 相对于弹性硬化属性的纳米线电极, 具有弹性软化属性的电极因为具有更好的抗失稳性而更适宜作为电极材料. 研究结果为纳米线电极的力学可靠性设计提供了一定的帮助.
    Nanowire-based electrodes have attracted much attention due to their high surface energy, short distance for lithium insertion, and the ability to accommodate the enormous strain. However, the buckling behavior may occur during lithiation for such wire-like electrodes, which would lead the battery performance to deteriorate. Therefore, it is vital to quantitatively understand the mechanism about the bucking behavior of the nanowire-based electrodes. Although the buckling behavior of wire-like electrode has been extensively studied in the past few decades, the influence of surface effect on it has not yet been thoroughly explored. For this purpose, a theoretical model of surface effects on buckling of nanowire electrode is presented by taking into account the lithium diffusion, stress, and concentration-dependent elastic properties. Based on the established model, the effects of the residual surface tension and elastic hardening/softening coefficients on buckling are investigated. The results show that surface effects can improve the mechanical reliability, thus delaying the critical buckling time of nanowire electrode. In addition, it is indicated that the surface effects depend on the radius size and slenderness ratio of the nanowire electrode, specifically, the smaller the radius size and the larger the slenderness ratio, the greater the influence of the surface effect is. Furthermore, compared with elastic hardening, with the participation of surface effects, the larger the elastic softening coefficient, the longer it takes for the nanowire electrode to reach the buckled state, and the better the stability of the electrode is. The novelty of this work is that the proposed models highlight the importance of surface effects on buckling of nanowire electrode. These findings provide a prospective insight into the designing of higher structural reliability of electrode.
      通信作者: 王峰会, fhwang@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11572253, 11972302)资助的课题.
      Corresponding author: Wang Feng-Hui, fhwang@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11572253, 11972302).
    [1]

    Larcher D, Tarascon J 2015 Nat. Chem. 7 19Google Scholar

    [2]

    Scrosati B, Garche J 2010 J. Power Sources 195 2419Google Scholar

    [3]

    Zhang S, Zhao K, Zhu T, Li J 2017 Prog. Mater. Sci. 89 479Google Scholar

    [4]

    Gür T 2018 Energy Environ. Sci. 11 2696Google Scholar

    [5]

    Edge J, O’Kane S, Prosser R, Kirkaldy N, Patel A, Hales A, Ghosh A, Ai W, Chen J, Yang J, Li S, Pang M, Bravo D, Tomaszewska A, Marzook M, Radhakrishnan K, Wang H, Patel Y, Wu B, Offer G 2021 Phys. Chem. Chem. Phys. 23 8200Google Scholar

    [6]

    Zhang W 2011 J. Power Sources 196 13Google Scholar

    [7]

    Chan C, Peng H, Liu G, McIlwrath K, Zhang X, Huggins R, Cui Y 2008 Nat. Nanotechnol. 3 31Google Scholar

    [8]

    Yu C, Li X, Ma T, Rong J, Zhang R, Shaffer J, An Y, Liu Q, Wei B, Jiang H 2012 Adv. Energy Mater. 2 68Google Scholar

    [9]

    Yao Y, McDowell M, Ryu I, Wu H, Liu N, Hu L, Nix W, Cui Y 2011 Nano Lett. 11 2949Google Scholar

    [10]

    Kim H, Han B, Choo J, Cho J 2008 Angew. Chem. 120 10305Google Scholar

    [11]

    Dasgupta N P, Sun J, Liu C, Brittman S, Andrews S C, Lim J, Gao H, Yan R, Yang P 2014 Adv. Mater. 26 2137Google Scholar

    [12]

    Chen L, Lu N, Xu C, Yu H, Wang T 2009 Electrochim. Acta 54 4198Google Scholar

    [13]

    Chan C, Zhang X, Cui Y 2008 Nano Lett. 8 307Google Scholar

    [14]

    Liu, X, Fan F, Yang H, Zhang S, Huang J, Zhu T 2013 ACS Nano 7 1495Google Scholar

    [15]

    Huang J, Li Z, Chong M, John P, Wu X, Li Q, Scott X, Nicholas S, Xiao H, Arunkumar S 2010 Science 330 1515Google Scholar

    [16]

    Wang X, Fan F, Wang J, Wang H, Tao S, Yang A, Liu Y, Beng C, Mao S, Zhu T, Xia S 2015 Nat. Commun. 6 8417Google Scholar

    [17]

    Chakraborty J, Please C, Goriely A, Chapman S 2015 Int. J. Solids Struct. 54 66Google Scholar

    [18]

    Zhang K, Li Y, Wu J, Zheng B, Yang F 2018 Int. J. Solids Struct. 144 289Google Scholar

    [19]

    Shen X, Wan Y 2021 Meccanica 1 1Google Scholar

    [20]

    Li Y, Zhang K, Zheng B, Yang F 2016 J. Phys. D: Appl. Phys. 49 285602Google Scholar

    [21]

    Zhang K, Chen J, Li Y, Liu D, Zheng B, Kai Y 2020 Results Phys. 16 103018Google Scholar

    [22]

    Li Y, Mao W, Zhang K, Jia Y, Yang F 2019 J. Phys. D: Appl. Phys. 52 435502Google Scholar

    [23]

    Zhang Y, Zhan S, Zhang K, Zheng B, Lyu L 2021 Eur. J. Mech. A/Solids 85 104111Google Scholar

    [24]

    Xing H, Liu Y, Wang B 2019 Acta Mech. 230 4145Google Scholar

    [25]

    Yeerella R, Boddeda H, Sengupta A, Chakraborty J 2020 J. Appl. Phys. 128 234901Google Scholar

    [26]

    Herring C 1951 Phys. Rev. 82 87Google Scholar

    [27]

    Gurtin M, Murdoch A 1975 Arch. Ration. Mech. Anal. 57 291Google Scholar

    [28]

    Miller R, Shenoy V 2000 Nanotechnology 11 139Google Scholar

    [29]

    Cammarata R 1994 Prog. Surf. Sci. 46 1Google Scholar

    [30]

    Cheng Y, Verbrugge M 2008 J. Appl. Phys. 104 083521Google Scholar

    [31]

    Deshpande R, Cheng Y, Verbrugge M 2010 J. Power Sources 195 5081Google Scholar

    [32]

    Hao F, Gao X, Fang D 2012 J. Appl. Phys. 112 103507Google Scholar

    [33]

    Sengupta A, Chakraborty J 2019 Acta Mech. 231 999Google Scholar

    [34]

    Gao Y, Zhou M 2011 J. Appl. Phys. 109 014310Google Scholar

    [35]

    Gao X, Fang D, Qu J 2015 Proc. R. Soc. London, Ser. A 471 20150366Google Scholar

    [36]

    Jia N, Peng Z, Wang S, Li J, Yao Y, Chen S 2020 Sci. China Ser. E: Technol. Sci. 63 2413Google Scholar

    [37]

    Zhang X, Chen H, Fang D 2020 Int. J. Mech. Sci. 169 105323Google Scholar

    [38]

    Stein P, Zhao Y, Xu B 2016 J. Power Sources 332 154Google Scholar

    [39]

    Bucci G, Swamy T, Bishop S, Sheldon B, Chiang Y, Carter W 2017 J. Electrochem. Soc. 164 A645Google Scholar

    [40]

    Lu Y, Zhang P, Wang F, Zhang K, Zhao X 2018 Electrochim. Acta 274 359Google Scholar

    [41]

    Young S, Ji L, Chang S, Fang T, Hsueh T, Meen T, Chen I 2007 Nanotechnology 18 225603Google Scholar

    [42]

    Riaz M, Nur O, Willander M, Klason P 2008 Appl. Phys. Lett. 92 103118Google Scholar

    [43]

    Wang G, Feng X 2009 Appl. Phys. Lett. 94 141913Google Scholar

    [44]

    Shenoy V, Johari P, Qi Y 2010 J. Power Sources 195 6825Google Scholar

    [45]

    Qi Y, Guo H, Hector J, L G, Timmons A 2010 J. Electrochem. Soc. 157 A558Google Scholar

    [46]

    Qi Y, Hector L, James C, Kim K 2014 J. Electrochem. Soc. 161 F3010Google Scholar

    [47]

    Swaminathan N, Balakrishnan S, George K 2015 J. Electrochem. Soc. 163 A488Google Scholar

    [48]

    Sharma P, Ganti S, Bhate N 2003 Appl. Phys. Lett. 82 535Google Scholar

    [49]

    Zhang X, Shyy W, Marie S 2007 J. Electrochem. Soc. 154 A910Google Scholar

    [50]

    Tian L, Rajapakse R 2007 Int. J. Solids Struct. 44 7988Google Scholar

    [51]

    He L, Li Z 2006 Int. J. Solids Struct. 43 6208Google Scholar

    [52]

    Wang S, Li X, Yi X, Duan H 2021 Extreme Mech. Lett. 44 101211Google Scholar

    [53]

    Wang G, Feng X 2007 Appl. Phys. Lett. 90 231904Google Scholar

    [54]

    He J, Lilley C 2008 Nano Lett. 8 1798Google Scholar

    [55]

    Song X, Lu Y, Wang F, Zhao X, Chen H 2020 J. Power Sources 452 227803Google Scholar

    [56]

    Zhang K, Li Y, Zheng B, Wu G, Wu J, Yang F 2017 Int. J. Solids Struct. 108 230Google Scholar

    [57]

    Lee S, McDowell M, Berla L, Nix W, Cui Y 2012 Proc. Natl. Acad. Sci. U. S. A. 109 4080Google Scholar

  • 图 1  纳米线电极在锂化过程中屈曲的示意图 (a)有表面效应; (b)无表面效应

    Fig. 1.  Schematic illustration of nanowire electrode buckling during lithiation: (a) With surface effect; (b) without surface effect.

    图 2  临界屈曲压力的结果 (a)临界屈曲压力随时间的变化情况, 其中实线表示考虑了表面效应, 点虚线表示没有考虑表面效应, 且红色线表示弹性硬化($ k=0.5 $), 靛蓝色线表示无弹性硬化/软化($ k=0 $), 黑色线表示弹性软化($ k=-0.5 $); (b)有表面效应与无表面效应的初始临界屈曲压力之比随电极半径的变化情况; (c)有表面效应与无表面效应的初始临界屈曲压力之比随电极长细比的变化情况

    Fig. 2.  Results of critical buckling load: (a) Evolution of critical buckling load with time (The solid lines represent considering the surface effect, dotted lines represent without considering the surface effect, and red lines denote $ k=0.5 $, indigo lines denote $ k=0 $, black lines denote $ k=-0.5 $); (b) ratio of initial critical buckling load between with and without surface effect as a function of radius; (c) ratio of initial critical buckling load between with and without surface effect as a function of slenderness ratio.

    图 3  纳米线电极轴力的结果 (a)轴力随时间的变化情况, 其中实线表示考虑了表面效应, 点虚线表示没有考虑表面效应, 且红色线表示弹性硬化($ k=0.5 $), 靛蓝色线表示无弹性硬化/软化($ k=0 $), 黑色线表示弹性软化($ k=-0.5 $); (b) 初始轴力随纳米线电极半径的变化情况

    Fig. 3.  Results of axial force $ {\stackrel{~}{F}}_{z} $: (a) Variation of axial force $ {\stackrel{~}{F}}_{z} $ with time $ \stackrel{~}{t} $ (The solid lines represent considering the surface effect, dotted lines represent without considering the surface effect, and red lines denote $ k=0.5 $, indigo lines denote $ k=0 $, black lines denote $ k=-0.5 $); (b) initial axial force with surface effect as a function of radius

    图 4  纳米线电极屈曲的结果情况 (a)有表面效应的条件下, 轴力与临界屈曲压力之比在不同的电极长细比下随时间的变化情况; (b)无表面效应的条件下, 轴力与临界屈曲压力之比在不同的电极长细比下随时间的变化情况; (c)有表面效应与无表面效应的纳米线电极达到临界屈曲所需的时间之比随电极长细比的变化情况; (d)有表面效应的条件下, 轴力与临界屈曲压力之比在不同的电极尺寸下随时间的变化情况; (e)无表面效应的条件下, 轴力与临界屈曲压力之比在不同的电极尺寸下随时间的变化情况; (f)有表面效应与无表面效应的纳米线电极达到临界屈曲所需的时间之比随电极尺寸的变化情况

    Fig. 4.  Results of nanowire electrode buckling: (a) Under the condition of with surface effect, the ratio of axial force to critical buckling load as a function of time for different slenderness ratio; (b) under the condition of without surface effect, the ratio of axial force to critical buckling load as a function of time for different slenderness ratio; (c) ratio of the time required for nanowire electrodes with surface effect and without surface effect to reach critical buckling varies with slenderness ratio; (d) under the condition of with surface effect, the ratio of axial force to critical buckling load as a function of time for different radius; (e) under the condition of without surface effect, the ratio of axial force to critical buckling load as a function of time for different radius; (f) ratio of the time required for nanowire electrodes with surface effect and without surface effect to reach critical buckling varies with radius.

    图 5  弹性硬化/软化系数对屈曲的影响 (a)在有表面效应的条件下, 轴力与临界屈曲压力之比在不同的电极弹性硬化/软化系数下随时间的变化情况; (b)无表面效应的条件下, 轴力与临界屈曲压力之比在不同的电极弹性硬化/软化系数下随时间的变化情况; (c)有表面效应与无表面效应的纳米线电极达到临界屈曲所需的时间之比随电极弹性硬化/软化系数的变化情况

    Fig. 5.  Effect of elastic hardening/softening coefficient on buckling: (a) Under the condition of with surface effect, the ratio of axial force to critical buckling load as a function of time for different hardening/softening coefficient; (b) under the condition of without surface effect, the ratio of axial force to critical buckling load as a function of time for different hardening/softening coefficient; (c) ratio of the time required for nanowire electrodes with surface effect and without surface effect to reach critical buckling varies with hardening/softening coefficient.

    表 1  材料参数

    Table 1.  Material parameters[55].

    物理参数符号/单位
    未锂化的弹性模量$ {E}_{0} $/GPa70
    泊松比v0.2
    偏摩尔体积$\varOmega /({\mathrm{m} }^{3}{\cdot}{\mathrm{m}\mathrm{o}\mathrm{l} }^{-1})$1.92 × 10–6
    锂的最大浓度${c}_{\mathrm{m} }/(\mathrm{m}\mathrm{o}\mathrm{l}{\cdot} {\mathrm{m} }^{-3})$2.33 × 104
    扩散系数${D}_{0}/({\mathrm{m} }^{2}{\cdot} {\mathrm{s} }^{-1})$1.76 × 10–15
    表面残余张力$\tau /(\mathrm{J}{\cdot}{\mathrm{m} }^{-2})$2
    长细比$ {l}_{0}/{r}_{0} $50
    电极半径尺寸$ {r}_{0} $/nm10
    下载: 导出CSV
  • [1]

    Larcher D, Tarascon J 2015 Nat. Chem. 7 19Google Scholar

    [2]

    Scrosati B, Garche J 2010 J. Power Sources 195 2419Google Scholar

    [3]

    Zhang S, Zhao K, Zhu T, Li J 2017 Prog. Mater. Sci. 89 479Google Scholar

    [4]

    Gür T 2018 Energy Environ. Sci. 11 2696Google Scholar

    [5]

    Edge J, O’Kane S, Prosser R, Kirkaldy N, Patel A, Hales A, Ghosh A, Ai W, Chen J, Yang J, Li S, Pang M, Bravo D, Tomaszewska A, Marzook M, Radhakrishnan K, Wang H, Patel Y, Wu B, Offer G 2021 Phys. Chem. Chem. Phys. 23 8200Google Scholar

    [6]

    Zhang W 2011 J. Power Sources 196 13Google Scholar

    [7]

    Chan C, Peng H, Liu G, McIlwrath K, Zhang X, Huggins R, Cui Y 2008 Nat. Nanotechnol. 3 31Google Scholar

    [8]

    Yu C, Li X, Ma T, Rong J, Zhang R, Shaffer J, An Y, Liu Q, Wei B, Jiang H 2012 Adv. Energy Mater. 2 68Google Scholar

    [9]

    Yao Y, McDowell M, Ryu I, Wu H, Liu N, Hu L, Nix W, Cui Y 2011 Nano Lett. 11 2949Google Scholar

    [10]

    Kim H, Han B, Choo J, Cho J 2008 Angew. Chem. 120 10305Google Scholar

    [11]

    Dasgupta N P, Sun J, Liu C, Brittman S, Andrews S C, Lim J, Gao H, Yan R, Yang P 2014 Adv. Mater. 26 2137Google Scholar

    [12]

    Chen L, Lu N, Xu C, Yu H, Wang T 2009 Electrochim. Acta 54 4198Google Scholar

    [13]

    Chan C, Zhang X, Cui Y 2008 Nano Lett. 8 307Google Scholar

    [14]

    Liu, X, Fan F, Yang H, Zhang S, Huang J, Zhu T 2013 ACS Nano 7 1495Google Scholar

    [15]

    Huang J, Li Z, Chong M, John P, Wu X, Li Q, Scott X, Nicholas S, Xiao H, Arunkumar S 2010 Science 330 1515Google Scholar

    [16]

    Wang X, Fan F, Wang J, Wang H, Tao S, Yang A, Liu Y, Beng C, Mao S, Zhu T, Xia S 2015 Nat. Commun. 6 8417Google Scholar

    [17]

    Chakraborty J, Please C, Goriely A, Chapman S 2015 Int. J. Solids Struct. 54 66Google Scholar

    [18]

    Zhang K, Li Y, Wu J, Zheng B, Yang F 2018 Int. J. Solids Struct. 144 289Google Scholar

    [19]

    Shen X, Wan Y 2021 Meccanica 1 1Google Scholar

    [20]

    Li Y, Zhang K, Zheng B, Yang F 2016 J. Phys. D: Appl. Phys. 49 285602Google Scholar

    [21]

    Zhang K, Chen J, Li Y, Liu D, Zheng B, Kai Y 2020 Results Phys. 16 103018Google Scholar

    [22]

    Li Y, Mao W, Zhang K, Jia Y, Yang F 2019 J. Phys. D: Appl. Phys. 52 435502Google Scholar

    [23]

    Zhang Y, Zhan S, Zhang K, Zheng B, Lyu L 2021 Eur. J. Mech. A/Solids 85 104111Google Scholar

    [24]

    Xing H, Liu Y, Wang B 2019 Acta Mech. 230 4145Google Scholar

    [25]

    Yeerella R, Boddeda H, Sengupta A, Chakraborty J 2020 J. Appl. Phys. 128 234901Google Scholar

    [26]

    Herring C 1951 Phys. Rev. 82 87Google Scholar

    [27]

    Gurtin M, Murdoch A 1975 Arch. Ration. Mech. Anal. 57 291Google Scholar

    [28]

    Miller R, Shenoy V 2000 Nanotechnology 11 139Google Scholar

    [29]

    Cammarata R 1994 Prog. Surf. Sci. 46 1Google Scholar

    [30]

    Cheng Y, Verbrugge M 2008 J. Appl. Phys. 104 083521Google Scholar

    [31]

    Deshpande R, Cheng Y, Verbrugge M 2010 J. Power Sources 195 5081Google Scholar

    [32]

    Hao F, Gao X, Fang D 2012 J. Appl. Phys. 112 103507Google Scholar

    [33]

    Sengupta A, Chakraborty J 2019 Acta Mech. 231 999Google Scholar

    [34]

    Gao Y, Zhou M 2011 J. Appl. Phys. 109 014310Google Scholar

    [35]

    Gao X, Fang D, Qu J 2015 Proc. R. Soc. London, Ser. A 471 20150366Google Scholar

    [36]

    Jia N, Peng Z, Wang S, Li J, Yao Y, Chen S 2020 Sci. China Ser. E: Technol. Sci. 63 2413Google Scholar

    [37]

    Zhang X, Chen H, Fang D 2020 Int. J. Mech. Sci. 169 105323Google Scholar

    [38]

    Stein P, Zhao Y, Xu B 2016 J. Power Sources 332 154Google Scholar

    [39]

    Bucci G, Swamy T, Bishop S, Sheldon B, Chiang Y, Carter W 2017 J. Electrochem. Soc. 164 A645Google Scholar

    [40]

    Lu Y, Zhang P, Wang F, Zhang K, Zhao X 2018 Electrochim. Acta 274 359Google Scholar

    [41]

    Young S, Ji L, Chang S, Fang T, Hsueh T, Meen T, Chen I 2007 Nanotechnology 18 225603Google Scholar

    [42]

    Riaz M, Nur O, Willander M, Klason P 2008 Appl. Phys. Lett. 92 103118Google Scholar

    [43]

    Wang G, Feng X 2009 Appl. Phys. Lett. 94 141913Google Scholar

    [44]

    Shenoy V, Johari P, Qi Y 2010 J. Power Sources 195 6825Google Scholar

    [45]

    Qi Y, Guo H, Hector J, L G, Timmons A 2010 J. Electrochem. Soc. 157 A558Google Scholar

    [46]

    Qi Y, Hector L, James C, Kim K 2014 J. Electrochem. Soc. 161 F3010Google Scholar

    [47]

    Swaminathan N, Balakrishnan S, George K 2015 J. Electrochem. Soc. 163 A488Google Scholar

    [48]

    Sharma P, Ganti S, Bhate N 2003 Appl. Phys. Lett. 82 535Google Scholar

    [49]

    Zhang X, Shyy W, Marie S 2007 J. Electrochem. Soc. 154 A910Google Scholar

    [50]

    Tian L, Rajapakse R 2007 Int. J. Solids Struct. 44 7988Google Scholar

    [51]

    He L, Li Z 2006 Int. J. Solids Struct. 43 6208Google Scholar

    [52]

    Wang S, Li X, Yi X, Duan H 2021 Extreme Mech. Lett. 44 101211Google Scholar

    [53]

    Wang G, Feng X 2007 Appl. Phys. Lett. 90 231904Google Scholar

    [54]

    He J, Lilley C 2008 Nano Lett. 8 1798Google Scholar

    [55]

    Song X, Lu Y, Wang F, Zhao X, Chen H 2020 J. Power Sources 452 227803Google Scholar

    [56]

    Zhang K, Li Y, Zheng B, Wu G, Wu J, Yang F 2017 Int. J. Solids Struct. 108 230Google Scholar

    [57]

    Lee S, McDowell M, Berla L, Nix W, Cui Y 2012 Proc. Natl. Acad. Sci. U. S. A. 109 4080Google Scholar

  • [1] 邹幸, 朱哲, 方文啸. 纳米线电卡效应的表面应力与固溶改性相场模拟. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240105
    [2] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比. 物理学报, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [3] 芦宾, 王大为, 陈宇雷, 崔艳, 苗渊浩, 董林鹏. 纳米线环栅隧穿场效应晶体管的电容模型. 物理学报, 2021, 70(21): 218501. doi: 10.7498/aps.70.20211128
    [4] 杨东升, 刘官厅. 磁电弹性材料中含有带四条纳米裂纹的正4n边形纳米孔的反平面断裂问题. 物理学报, 2020, 69(24): 244601. doi: 10.7498/aps.69.20200850
    [5] 彭劼扬, 王家海, 沈斌, 李浩亮, 孙昊明. 纳米颗粒的表面效应和电极颗粒间挤压作用对锂离子电池电压迟滞的影响. 物理学报, 2019, 68(9): 090202. doi: 10.7498/aps.68.20182302
    [6] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法. 物理学报, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [7] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [8] 阳喜元, 全军. 金属纳米线弹性性能的尺寸效应及其内在机理的模拟研究. 物理学报, 2015, 64(11): 116201. doi: 10.7498/aps.64.116201
    [9] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [10] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [11] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究. 物理学报, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [12] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响. 物理学报, 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [13] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [14] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [15] 姚小虎, 韩 强. 热力耦合作用下双层碳纳米管的扭转屈曲. 物理学报, 2008, 57(8): 5056-5062. doi: 10.7498/aps.57.5056
    [16] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响. 物理学报, 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [17] 罗文雄, 黄世华, 由芳田, 彭洪尚. YBO3:Eu3+纳米晶发光特性. 物理学报, 2007, 56(3): 1765-1769. doi: 10.7498/aps.56.1765
    [18] 田建辉, 韩 旭, 刘桂荣, 龙述尧, 秦金旗. SiC纳米杆的弛豫性能研究. 物理学报, 2007, 56(2): 643-648. doi: 10.7498/aps.56.643
    [19] 王 磊, 张洪武, 王晋宝. 范德华力对双壁碳纳米管轴向压缩屈曲行为的影响. 物理学报, 2007, 56(3): 1506-1513. doi: 10.7498/aps.56.1506
    [20] 王 宇, 王秀喜, 倪向贵, 吴恒安. 单壁碳纳米管轴向压缩变形的研究. 物理学报, 2003, 52(12): 3120-3124. doi: 10.7498/aps.52.3120
计量
  • 文章访问数:  3282
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2021-11-14
  • 上网日期:  2022-01-23
  • 刊出日期:  2022-02-05

/

返回文章
返回