搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向SiO2/Si异质结构的纳米SiO2导波层表面效应及弹性理论失效判定

明威 张涛 文芷菁 李乐康 巩鹏杰 张广明

引用本文:
Citation:

面向SiO2/Si异质结构的纳米SiO2导波层表面效应及弹性理论失效判定

明威, 张涛, 文芷菁, 李乐康, 巩鹏杰, 张广明

The nanoscale surface effects of SiO2/Si heterostructures and the failure criterion of elasticity theory

Ming Wei, Zhang Tao, Wen Zhi-Jing, Li Le-Kang, Gong Peng-Jie, Zhang Guang-Ming
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 随着微纳声学器件的快速发展,其核心声学结构已进入纳米尺度范畴,表面效应对薄膜材料性能的影响日益凸显,经典弹性理论面临挑战。本文基于表面弹性理论,引入表面能密度研究纳米尺度下的表面效应,采用傅里叶积分变换法推导出纳米尺度SiO2/Si异质结构薄膜表面牵引力下应力场与位移场的解析表达式。研究结果显示,若以表面应力分布与经典理论相差3%作为判断标准,在激励区域宽度2a的5倍范围内,材料的微观特性彰显主导地位。随着激励区域不断减小,在激励区域内及边界附近表面应力分布较经典理论更加集中,剪切应力于边界处有极大值,材料表面刚度与抗变形能力增加,横向与纵向位移较经典理论减小。纳米尺度异质结构存在显著表面效应,导致应力和位移分布明显偏离弹性理论,经典弹性假设在相应纳米尺度范围不再适用。以上结果表明,在纳米尺度固体表面中,超高频纳米波长声波传播将明显受到尺度效应影响,经典弹性波理论在纳米尺度存在失效现象,这对纳米声学理论研究具有参考价值。
    Due to the rapid development of micro-nano acoustic devices, their core acoustic structures have entered the nanoscale category. The influence of surface effects on the mechanical properties of thin-film materials at the nanoscale becomes increasingly prominent, and the classical elasticity theory struggles to describe mechanical behavior at this scale. In this paper, a mechanical model of nano-SiO2/Si heterostructured thin films considering surface effects is established based on surface elasticity theory by introducing the key parameter of surface energy density. In this paper, a mechanical model of heterostructured nano-SiO2/Si films is created based on the surface elasticity theory, taking into account surface effects by introducing the key parameter of surface energy density. Using the Fourier integral transform method, analytical expressions for stress and displacement fields under surface traction are systematically derived, revealing the influence of surface effects on the mechanical behavior of materials at the nanoscale by comparing the analytical solution with the classical theory. The results show that when the surface stress distribution differs by 3% from that predicted by the classical theory, the microscopic properties of the material are dominant and the surface effect cannot be neglected within a range of 5 times the width of the excitation region 2a. As the size of the excitation region decreases, the surface effect is significantly enhanced and the stress distribution within the excitation region and near the boundary becomes more concentrated than in the classical theory. The shear stress is no longer zero, and an extreme value is observed at the boundary, which differs significantly from that predicted by the classical theory of elasticity. The transverse and longitudinal displacements are reduced compared with the classical theory, and the surface stiffness and deformation resistance of the material are greatly improved. Significant surface effects occur on nanoscale heterostructured thin films, leading to large deviations in stress and displacement distributions from elasticity theory. Therefore, the classical elasticity assumptions are no longer applicable within the corresponding nanoscale range. The results demonstrate that the propagation of ultrahigh frequency nano length acoustic waves in nanoscale solid film surfaces is significantly affected by the scale effect. The failure of the classical elastic wave theory at the nanoscale is valuable for the study of nanoscale acoustic theory. Furthermore, these findings provide a theoretical basis for the subsequent development of a more precise model of interfacial effects and a more detailed investigation of the influence of the film-substrate modulus ratio.
  • [1]

    Hui X P 2024 Acta Mech. Solida Sin. 37 371-384

    [2]

    Farajpour A, Ghayesh H M, Farokhi H 2018 Int. J. Eng. Sci. 133 231-263

    [3]

    Peddieson J, Buchanan R G, McNitt P R 2003 Int. J. Eng. Sci. 41 305-312

    [4]

    Eringen A C 1967 NY.

    [5]

    Toupin R A 1964 Arch. Ration. Mech. Anal. 17 85-112

    [6]

    Gibbs J W 1879 Trans. Conn. Acad. 2 300-320

    [7]

    Gurtin M E, Murdoch A I 1975 Arch. Ration. Mech. Anal. 59 389-390

    [8]

    Miller R E, Shenoy V B 2000 Nanotechnology 11 139-147

    [9]

    He J, Lilley C M 2008 Nano Lett. 8 1798-1802

    [10]

    Tong L H, Lin F, Xiang Y, Shen H S, Lim C W 2021 Compos. Struct. 265 113708

    [11]

    Zhang S Y, Tang X Y, Ruan H H, Zhu L L 2019 Appl. Phys. A 125 1-14

    [12]

    Chen S, Yao Y 2014 Appl. Mech. 81 121002

    [13]

    Zhang Y Y, Wang Y X, Zhang X,Shen H M, She G L 2021 Steel Compos. Struct. 38 293-304

    [14]

    Wang L Y, Wu H M, Ou Z Y 2024 Math. Mech. Solids 29 401-417

    [15]

    George V, Mohammadreza Y 2017 Crystals 7 321-349

    [16]

    Saffari S, Hashemian M, Toghraie D 2017 Physica B 520 97-105

    [17]

    Chen D Q, Sun D L, Li X F 2017 Compos. Struct. 173 116-126

    [18]

    Ye G J, Yin C, Li S Y, Wang X P, Wu J 2023 Acta Phys. Sin. 72 104201 (in Chinese)[叶高杰, 殷澄, 黎思瑜, 俞强, 王贤平, 吴坚 2023 物理学报 72 104201]

    [19]

    Shang S P, Lu Y J, Wang F H 2022 Acta Phys. Sin. 71 033101 (in Chinese)[尚 帅朋, 陆勇俊, 王峰会 2022 物理学报 71 033101]

    [20]

    Tian X G, Tao L Q, Liu B, Zhou C J, Ren T L 2016 IEEE Electron Device Lett. 37 1063-1066.

    [21]

    Shen B, Huang Z W, Ji Z, Lin Q, Chen S L,Cui D J, Zhang Z N 2019 Surf. Coat. Technol. 380 125061

    [22]

    Selvadurai A P S 2000 Partial Differential Equations in Mechanics (Berlin: Springer)

    [23]

    OuYang G, Wang C X, Yang G W 2009 Chem. Rev. 109 4221-4247

    [24]

    Zhang C, Yao Y, Chen S H 2014 Comput. Mater. Sci. 82 372-377

    [25]

    Yao Y, Chen S 2016 Acta Mech. 227 1799-1811

    [26]

    Gao X, Hao F, Fang D, Huang Z 2013 Int. J. Solids Struct. 50 2620-2630

    [27]

    Wang L Y 2020 Int. J. Mech. Mater. Des. 16 633-645

  • [1] 杨志平, 孔熙, 石发展, 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, doi: 10.7498/aps.71.20211348
    [2] 陈小明, 李国荣. BaTiO3基无铅陶瓷大电致伸缩系数. 物理学报, doi: 10.7498/aps.71.20220451
    [3] 尚帅朋, 陆勇俊, 王峰会. 表面效应对纳米线电极屈曲失稳的影响. 物理学报, doi: 10.7498/aps.71.20211864
    [4] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型. 物理学报, doi: 10.7498/aps.69.20191512
    [5] 梁晋洁, 高宁, 李玉红. 表面效应对铁${\left\langle 100 \right\rangle} $间隙型位错环的影响. 物理学报, doi: 10.7498/aps.69.20191379
    [6] 杨东升, 刘官厅. 磁电弹性材料中含有带四条纳米裂纹的正4n边形纳米孔的反平面断裂问题. 物理学报, doi: 10.7498/aps.69.20200850
    [7] 张烨, 张冉, 常青, 李桦. 壁面效应对纳米尺度气体流动的影响规律研究. 物理学报, doi: 10.7498/aps.68.20190248
    [8] 彭劼扬, 王家海, 沈斌, 李浩亮, 孙昊明. 纳米颗粒的表面效应和电极颗粒间挤压作用对锂离子电池电压迟滞的影响. 物理学报, doi: 10.7498/aps.68.20182302
    [9] 董杨, 杜博, 张少春, 陈向东, 孙方稳. 基于金刚石体系中氮-空位色心的固态量子传感. 物理学报, doi: 10.7498/aps.67.20180788
    [10] 张龙艳, 徐进良, 雷俊鹏. 纳米尺度下气泡核化生长的分子动力学研究. 物理学报, doi: 10.7498/aps.67.20180993
    [11] 张鹏飞, 乔春红, 冯晓星, 黄童, 李南, 范承玉, 王英俭. Non-Kolmogorov湍流大气中小尺度热晕效应线性理论. 物理学报, doi: 10.7498/aps.66.244210
    [12] 梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳. 表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究. 物理学报, doi: 10.7498/aps.61.153102
    [13] 唐冬和, 杜磊, 王婷岚, 陈华, 陈文豪. 纳米尺度MOSFET过剩噪声的定性分析. 物理学报, doi: 10.7498/aps.60.107201
    [14] 张冬仙, 刘 超, 章海军. 微纳米尺度红外光热膨胀效应及新型光热驱动方法研究. 物理学报, doi: 10.7498/aps.57.3107
    [15] 罗文雄, 黄世华, 由芳田, 彭洪尚. YBO3:Eu3+纳米晶发光特性. 物理学报, doi: 10.7498/aps.56.1765
    [16] 田建辉, 韩 旭, 刘桂荣, 龙述尧, 秦金旗. SiC纳米杆的弛豫性能研究. 物理学报, doi: 10.7498/aps.56.643
    [17] 谢根全, 韩 旭, 龙述尧, 田建辉. 基于非局部弹性理论的单壁碳纳米管轴向受压屈曲研究. 物理学报, doi: 10.7498/aps.54.4192
    [18] 曾华荣, 余寒峰, 初瑞清, 李国荣, 殷庆瑞, 唐新桂. PZT铁电薄膜纳米尺度铁电畴的场致位移特性. 物理学报, doi: 10.7498/aps.54.1437
    [19] 于洪滨, 杨威生. 石墨上纳米尺度金岛的形成. 物理学报, doi: 10.7498/aps.46.500
    [20] 卢鹤绂. 关於流体的容变粘滞弹性理论及其在声吸收现象中的应用. 物理学报, doi: 10.7498/aps.12.5
计量
  • 文章访问数:  31
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-04

/

返回文章
返回