搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米尺度下气泡核化生长的分子动力学研究

张龙艳 徐进良 雷俊鹏

引用本文:
Citation:

纳米尺度下气泡核化生长的分子动力学研究

张龙艳, 徐进良, 雷俊鹏

Molecular dynamics study of bubble nucleation on a nanoscale

Zhang Long-Yan, Xu Jin-Liang, Lei Jun-Peng
PDF
导出引用
  • 采用分子动力学方法模拟纳米尺度下液体在固体壁面上发生核化沸腾的过程,主要研究壁面浸润性对气泡初始核化过程和气泡生长速率的影响以及固-液界面效应在液体核化沸腾的能量传递过程中所起到的作用.研究结果发现:壁面浸润性越强,气泡在固壁处越容易核化.该结果与经典核化理论中“疏水壁面易于产生气泡”的现象产生了明显的区别.其根本原因是在纳米尺度下,固-液界面热阻效应不能被忽略.一方面,在相同的壁温下,通过增强固-液相互作用,可以显著降低界面热阻,使得热量传递效率提高,导致靠近壁面处的流体温度升高,气泡核化等待时间缩短,有利于液体沸腾核化.另一方面,气泡的生长速率随着壁面浸润性的增强而明显升高.当气泡体积生长到一定程度时,会在壁面处形成气膜,从而导致壁面传热性能恶化.因此,通过壁面的热流密度呈现出先增大后减小的规律.
    With the rapid development of nanotechnology, nucleate boiling has been widely applied to the thermal management of nanoelectronics, owing to its highly-efficient heat transfer characteristics. Considering the scale effects, such as temperature jump at solid-liquid interface, a further study of nucleation boiling mechanism at a microscopic level is needed. At present, extensive studies have been carried out for providing a significant insight into the formation of nano-bubbles in a nanoscale thermal system, but the effect of heat transfer efficiency affected by the surface wettability on bubble nucleation over solid substrate is rarely available in the literature. Therefore, in this paper, the effect of surface wettability on the initial nucleation process and growth rate of bubbles are investigated and the mechanism of bubble nucleation on a nanoscale is analyzed, by the molecular dynamics simulation. The modified Lennard-Jones potential is used for investigating the solid-liquid interaction. Changing the potential parameters α and β can obtain different surface wettability. The atomic sites, liquid density profiles and bubble nucleus volumes are computed to compare the processes of bubble nucleation on different surfaces. The variation of liquid temperature, potential and absorbed heat flux with heating time are evaluated to explore the mechanism of bubble nucleation. The simulation results show that the surface wettability influences the bubble nucleation and heat transfer at liquid-solid interface significantly. On the one hand, the bubble nucleation is promoted by properly increasing the liquid-solid interaction, which is distinctly different from the existing classical theory related to nano-bubble preferably formed on a hydrophobic surface. This is because the thermal resistance of the solid-liquid interface on a nanoscale cannot be neglected. The interface thermal resistance will decrease with the increase of wettability. Therefore, the heat transfer efficiency is higher for a stronger liquid-solid interaction so that the liquid over the hot wall obtains more energy to make bubble nucleus generated earlier. On the other hand, the surface wettability also influences the bubble growth rate. The stronger the liquid-solid interaction, the faster the bubble grows. When the volume of bubble reaches a certain value, a vapor film is formed on the substrate, leading to film boiling. Furthermore, it also illustrates that initial heat flux increases with time. In this stage, the heat flux curve shows two kinds of slopes, corresponding to the occurrence of evaporation and bubble nucleation, respectively. Then, after a certain time, the heat flux profile presents a declining trend, indicating a change into film boiling.
    • 基金项目: 国家自然科学基金(批准号:51436004)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51436004).
    [1]

    Agostini B, Fabbri M, Park J E, Wojtan L, Thome J R, Michel B 2007 Heat Transfer Eng. 28 258

    [2]

    Riofrío M C, Caney N, Gruss J A 2016 Appl. Therm. Eng. 104 333

    [3]

    Zhang S W, Yuan W, Tang Y, Chen J L, Li Z T 2016 Appl. Therm. Eng. 104 659

    [4]

    Marable D C, Shin S, Nobakht A Y 2017 Int. J. Heat Mass Transf. 109 28

    [5]

    Xu J L, Li Y X 2007 Int. J. Heat Mass Transf. 50 2571

    [6]

    bin Saleman A R, Chilukoti H K, Kikugawa G, Shibahara M, Ohara T 2017 Int. J. Therm. Sci. 120 273

    [7]

    Bourdon B, Bertrand E, di Marco P, Marengo M, Rioboo R, de Coninck J 2015 Adv. Colloid Interface Sci. 221 34

    [8]

    Jo H J, Ahn H S, Kang S H, Kim M H 2011 Int. J. Heat Mass Transf. 54 5643

    [9]

    Quan X J, Chen G, Cheng P 2011 Int. J. Heat Mass Transf. 54 4762

    [10]

    Xu X P, Qian T Z 2014 Phys. Rev. E 89 063002

    [11]

    Kinjo T, Matsumoto M 1998 Fluid Phase Equilib. 144 343

    [12]

    Kimura T, Maruyama S 2002 Microscale Thermophys. Eng. 6 3

    [13]

    Kinjo T, Gao G T, Zeng X C 2000 Prog. Theor. Phys. Suppl. 138 732

    [14]

    Mao Y J, Zhang Y W 2013 Nanoscale Microscale Thermophys. Eng. 17 79

    [15]

    Theofanous T G, Tu J P, Dinh A T, Dinh T N 2002 Exp. Therm. Fluid Sci. 26 775

    [16]

    Nagayama G, Tsuruta T, Cheng P 2006 Int. J. Heat Mass Transf. 49 4437

    [17]

    Bai B F, Li S J 2010 Proceedings of the 14th International Heat Transfer Conference Washington, United States of America, August 8-13, 2010 p177

    [18]

    Novak B R, Maginn E J, McCready M J 2008 J. Heat Transfer 130 042411

    [19]

    Carey V P, Wemhoff A P 2005 Int. J. Heat Mass Transf. 48 5431

    [20]

    Hens A, Agarwal R, Biswas G 2014 Int. J. Heat Mass Transf. 71 303

    [21]

    Yamamoto T, Matsumoto M 2012 J. Therm. Sci. Technol. Jpn. 7 334

    [22]

    Nagayama G, Kawagoe M, Tokunaga A, Tsuruta T 2010 Int. J. Therm. Sci. 49 59

    [23]

    Phan H T, Caney N, Marty P, Colasson S, Gavillet J 2009 Int. J. Heat Mass Transf. 52 5459

    [24]

    Gong S, Cheng P 2015 Int. J. Heat Mass Transf. 85 635

    [25]

    Leroy F, MüllerPlathe F 2010 J. Chem. Phys. 133 044110

    [26]

    Okumura H, Ito N 2003 Phys. Rev. E 67 045301

  • [1]

    Agostini B, Fabbri M, Park J E, Wojtan L, Thome J R, Michel B 2007 Heat Transfer Eng. 28 258

    [2]

    Riofrío M C, Caney N, Gruss J A 2016 Appl. Therm. Eng. 104 333

    [3]

    Zhang S W, Yuan W, Tang Y, Chen J L, Li Z T 2016 Appl. Therm. Eng. 104 659

    [4]

    Marable D C, Shin S, Nobakht A Y 2017 Int. J. Heat Mass Transf. 109 28

    [5]

    Xu J L, Li Y X 2007 Int. J. Heat Mass Transf. 50 2571

    [6]

    bin Saleman A R, Chilukoti H K, Kikugawa G, Shibahara M, Ohara T 2017 Int. J. Therm. Sci. 120 273

    [7]

    Bourdon B, Bertrand E, di Marco P, Marengo M, Rioboo R, de Coninck J 2015 Adv. Colloid Interface Sci. 221 34

    [8]

    Jo H J, Ahn H S, Kang S H, Kim M H 2011 Int. J. Heat Mass Transf. 54 5643

    [9]

    Quan X J, Chen G, Cheng P 2011 Int. J. Heat Mass Transf. 54 4762

    [10]

    Xu X P, Qian T Z 2014 Phys. Rev. E 89 063002

    [11]

    Kinjo T, Matsumoto M 1998 Fluid Phase Equilib. 144 343

    [12]

    Kimura T, Maruyama S 2002 Microscale Thermophys. Eng. 6 3

    [13]

    Kinjo T, Gao G T, Zeng X C 2000 Prog. Theor. Phys. Suppl. 138 732

    [14]

    Mao Y J, Zhang Y W 2013 Nanoscale Microscale Thermophys. Eng. 17 79

    [15]

    Theofanous T G, Tu J P, Dinh A T, Dinh T N 2002 Exp. Therm. Fluid Sci. 26 775

    [16]

    Nagayama G, Tsuruta T, Cheng P 2006 Int. J. Heat Mass Transf. 49 4437

    [17]

    Bai B F, Li S J 2010 Proceedings of the 14th International Heat Transfer Conference Washington, United States of America, August 8-13, 2010 p177

    [18]

    Novak B R, Maginn E J, McCready M J 2008 J. Heat Transfer 130 042411

    [19]

    Carey V P, Wemhoff A P 2005 Int. J. Heat Mass Transf. 48 5431

    [20]

    Hens A, Agarwal R, Biswas G 2014 Int. J. Heat Mass Transf. 71 303

    [21]

    Yamamoto T, Matsumoto M 2012 J. Therm. Sci. Technol. Jpn. 7 334

    [22]

    Nagayama G, Kawagoe M, Tokunaga A, Tsuruta T 2010 Int. J. Therm. Sci. 49 59

    [23]

    Phan H T, Caney N, Marty P, Colasson S, Gavillet J 2009 Int. J. Heat Mass Transf. 52 5459

    [24]

    Gong S, Cheng P 2015 Int. J. Heat Mass Transf. 85 635

    [25]

    Leroy F, MüllerPlathe F 2010 J. Chem. Phys. 133 044110

    [26]

    Okumura H, Ito N 2003 Phys. Rev. E 67 045301

  • [1] 李文, 马骁婧, 徐进良, 王艳, 雷俊鹏. 纳米结构及浸润性对液滴润湿行为的影响. 物理学报, 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [2] 息剑峰, 李宝河, 刘丹, 李熊, 耿爱丛, 李笑. LaAlO3/SrTiO3界面增强光伏效应. 物理学报, 2021, 70(8): 086802. doi: 10.7498/aps.70.20201330
    [3] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型. 物理学报, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [4] 陈东, 余本海. 外延应变和铁电极化双重调控LaMnO3/BaTiO3超晶格的磁性. 物理学报, 2020, 69(22): 226301. doi: 10.7498/aps.69.20200839
    [5] 杨东升, 刘官厅. 磁电弹性材料中含有带四条纳米裂纹的正4n边形纳米孔的反平面断裂问题. 物理学报, 2020, 69(24): 244601. doi: 10.7498/aps.69.20200850
    [6] 张烨, 张冉, 常青, 李桦. 壁面效应对纳米尺度气体流动的影响规律研究. 物理学报, 2019, 68(12): 124702. doi: 10.7498/aps.68.20190248
    [7] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究. 物理学报, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [8] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [9] 董杨, 杜博, 张少春, 陈向东, 孙方稳. 基于金刚石体系中氮-空位色心的固态量子传感. 物理学报, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [10] 王鹏伟, 刘明杰, 江雷. 仿生多尺度超浸润界面材料. 物理学报, 2016, 65(18): 186801. doi: 10.7498/aps.65.186801
    [11] 刘恩华, 陈钊, 温晓莉, 陈长乐. 顺磁性La2/3Sr1/3MnO3层对Bi0.8Ba0.2FeO3薄膜多铁性能的影响. 物理学报, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [12] 宋晓艳, 徐文武, 张哲旭. 亚稳相的纳米尺度稳定化:热力学模型与实验研究. 物理学报, 2012, 61(20): 200510. doi: 10.7498/aps.61.200510
    [13] 黄秀峰, 潘礼庆, 李晨曦, 王强, 孙刚, 陆坤权. 低温下二氧化硅介孔内水的振动性质. 物理学报, 2012, 61(13): 136801. doi: 10.7498/aps.61.136801
    [14] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [15] 许涌, 蔡建旺. 几种元素的界面插层对Ta/NiFe/Ta的各向异性磁电阻效应的影响. 物理学报, 2011, 60(11): 117308. doi: 10.7498/aps.60.117308
    [16] 张冬仙, 刘 超, 章海军. 微纳米尺度红外光热膨胀效应及新型光热驱动方法研究. 物理学报, 2008, 57(5): 3107-3112. doi: 10.7498/aps.57.3107
    [17] 曹炳阳, 陈 民, 过增元. 纳米通道内液体流动的滑移现象. 物理学报, 2006, 55(10): 5305-5310. doi: 10.7498/aps.55.5305
    [18] 曾华荣, 余寒峰, 初瑞清, 李国荣, 殷庆瑞, 唐新桂. PZT铁电薄膜纳米尺度铁电畴的场致位移特性. 物理学报, 2005, 54(3): 1437-1441. doi: 10.7498/aps.54.1437
    [19] 缪智武, 丁建文, 颜晓红, 唐娜斯. 畸变对hopping电导的影响:ThueMorse纳米结构模型. 物理学报, 2003, 52(5): 1213-1217. doi: 10.7498/aps.52.1213
    [20] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响. 物理学报, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
计量
  • 文章访问数:  7820
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-22
  • 修回日期:  2018-09-05
  • 刊出日期:  2018-12-05

/

返回文章
返回