搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转圆柱阴极磁控溅射三维仿真模型的建立与验证

马梓淇 徐强 肖梦然 汤诗奕 陶志群 杨东杰 安小凯 刘亮亮 崔岁寒 吴忠振

引用本文:
Citation:

旋转圆柱阴极磁控溅射三维仿真模型的建立与验证

马梓淇, 徐强, 肖梦然, 汤诗奕, 陶志群, 杨东杰, 安小凯, 刘亮亮, 崔岁寒, 吴忠振

Establishment and validation of three-dimensional simulation model for magnetron sputtering of rotating cylindrical cathode

MA Ziqi, XU Qiang, XIAO Mengran, TANG Shiyi, TAO Zhiqun, YANG Dongjie, AN Xiaokai, LIU Liangliang, CUI Suihan, WU Zhongzhen
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 旋转圆柱阴极具有较高的理论靶材利用率, 已经普遍应用于各行各业的薄膜制备中. 在其等离子体研究方面, 相对于平面阴极, 旋转圆柱阴极的等离子体放电输运过程涉及三维体系, 对此传统模型的计算量大且收敛性差, 导致仿真困难. 鉴于此, 本文利用二维粒子网格/蒙特卡罗模型计算得到的等离子体密度和电势分布作为自洽背景场, 再通过三维检验电子蒙特卡罗方法跟踪电子运动实现三维等离子体放电仿真. 在此基础上, 以等离子体密度投影作为刻蚀通量, 耦合元胞自动机方法和检验粒子蒙特卡罗方法分别实现三维靶材刻蚀和粒子沉积仿真, 从而构建了阴极磁场-等离子体放电-靶材刻蚀-薄膜沉积的全链条三维仿真体系. 结果表明, 该三维仿真体系能够精准预测圆柱阴极的工作状态, 其中靶材利用率为85.81%, 与实际误差低于2%, 沉积In/Sn摩尔比为11.76, 与实际相差6.6%, 载板上粒子分布与实际薄膜厚度分布吻合, 沉积均匀区长度为1730 mm, 与实际误差仅为1.1%.
    Rotating cylindrical cathodes possess high theoretical target utilization rates and have been widely used in thin film deposition in various industries. Regarding plasma research, the plasma discharge and transport processes of rotating cylindrical cathodes involve three-dimensional systems, unlike those of planar cathodes. Traditional plasma models applied to these systems require a large quantity of computational resources and have poor convergence, making simulation difficult. In this context, the plasma density and electric potential distributions are calculated by a two-dimensional particle-in-cell/Monte Carlo collision (PIC/MCC) model, and they are used as a self-consistent background field in this work. Furthermore, a three-dimensional electron Monte Carlo method is used to track electron motion, so that three-dimensional plasma discharge simulation can be performed. On this basis, using plasma density projection as the etching flux and the cellular automata method, the rotational etching process of the cylindrical cathode is decomposed into stepwise micro-element static etching, thereby achieving three-dimensional etching behavior simulation. Subsequently, the etched target morphology is equivalently treated as the emission flux of In and Sn atoms, and a three-dimensional test particle Monte Carlo method is employed to trace their motion, realizing three-dimensional particle deposition simulation. Thus, a comprehensive three-dimensional simulation system is constructed through incorporating the cathode magnetic field, plasma discharge, target etching, and thin-film deposition into a complete simulation chain. The results indicate that this three-dimensional simulation system can accurately predict the operating conditions of cylindrical cathodes. The plasma stably accumulates on the cylindrical cathode surface, forming a three-dimensional discharge race track. The simulated etching profile is consistent with experimental result, showing the precise matching of the feature points with the residual thickness of the target. The utilization rate of the target material is 85.81%, with an error of less than 2% compared with that of the measurement. The molar ratio of In/Sn on the substrate is 11.76, with an error of 6.6% compared with the results measured by energy dispersive spectroscopy. The particle distribution on the substrate matches the actual film thickness distribution, with a uniform deposition length of 1730 mm, representing an error of only 1.1% compared with corresponding actual value.
  • 图 1  ITO圆柱阴极的基本结构与磁场配置 (a) 三维模型; (b) 横截面图; (c) 磁铁配置俯视图, 其中蓝色矢量符号表示磁极方向; (d) 端头和(e) 直部的磁铁配置截面

    Fig. 1.  Basic structure and magnetic field configuration of ITO cylindrical cathode: (a) Three-dimensional (3D) model; (b) cross-sectional view; (c) top view of the magnet configuration, where the blue vectors represent the direction of the magnetic poles; magnet configuration of (d) the end and (e) the straight section.

    图 2  圆柱靶材表面各向磁场分布 (a1)仿真和(a2)实验的法向(r)磁感应强度; (b1)仿真和(b2)实验的环向(θ)磁感应强度; (c1)仿真和(c2)实验的轴向(z)磁感应强度

    Fig. 2.  Distribution of magnetic field on the surface of the cylindrical target: Normal (r) magnetic flux density by (a1) simulation and (a2) experiment; azimuthal (θ) magnetic flux density by (b1) simulation and (b2) experiment; axial (z) magnetic flux density by (c1) simulation and (c2) experiment.

    图 3  双圆柱阴极的PIC/MCC模型示意图

    Fig. 3.  Schematic diagram of the PIC/MCC model for the double cylindrical cathodes.

    图 4  放电电压250 V, 气压0.6 Pa条件下, 双圆柱阴极放电的稳态 (a) 等离子体密度、(b) 电势和(c) 磁感线分布

    Fig. 4.  Steady-state distribution of (a) plasma density, (b) electric potential, and (c) magnetic flux lines for the discharge of double cylindrical cathodes at 250 V, 0.6 Pa.

    图 5  三维检验电子MC模型示意图 (a) 纵截面; (b) 横截面

    Fig. 5.  Schematic diagram of the 3D test electron MC model: (a) Longitudinal section; (b) cross section.

    图 6  (a)靶面和(b)不同截面上的检验电子密度分布

    Fig. 6.  Electron density distribution (a) on the target surface and (b) at different cross-sections.

    图 7  圆柱阴极CA模型 (a) 静态模型; (b) 耦合旋转效应; (c) 动态刻蚀模拟流程图

    Fig. 7.  Schematic diagram of the CA model for the cylindrical cathode: (a) Static model; (b) model coupled with rotation; (c) flowchart of dynamic erosion simulation with the rotational CA model.

    图 8  (a)仿真和(b)实验得到的阴极刻蚀形貌

    Fig. 8.  Cathode erosion profile obtained by (a) simulation and (b) experiment.

    图 9  靶材粒子(a)沿x方向上和(b)沿z方向上的沉积数量分布

    Fig. 9.  Deposition distribution of target material particles along (a) the x direction and (b) the z direction.

    表 1  Ar气放电反应参数表[23]

    Table 1.  Table of Ar gas discharge reaction parameters[23].

    序号 反应方程式 反应速率系数kr/(m3⋅s–1) 反应阈值/eV 反应类型
    1 e+Ar→Ar+e $ \begin{aligned} &2.336 \times {10^{ - 14}}{T_{\text{e}}}^{1.609} \\ &\times\exp \left[ {0.0618{{\left( {\ln {T_{\text{e}}}} \right)}^2} - 0.1171{{\left( {\ln {T_{\text{e}}}} \right)}^3}} \right] \end{aligned} $ 弹性碰撞
    2 e+Ar→Ar++2e $ 2.34 \times {10^{ - 14}}{T_{\text{e}}}^{0.59} \times \exp \left( { - 17.44/{T_{\text{e}}}} \right) $ 15.76 电离碰撞
    3 e+Ar→ Arm+e $ 2.5 \times {10^{ - 15}}{T_{\text{e}}}^{0.74} \times \exp \left( { - 11.56/{T_{\text{e}}}} \right) $ 11.56 激发碰撞
    4 e+Arm→Ar++2e $ 6.8 \times {10^{ - 15}}{T_{\text{e}}}^{0.67} \times \exp \left( { - 4.2/{T_{\text{e}}}} \right) $ 4.2 激发态电离
    5 e+Arm→Ar+e $ 4.3 \times {10^{ - 16}}{T_{\text{e}}}^{0.74} $ –11.56 退激发碰撞
    6 Ar++Ar→Ar++Ar 硬球碰撞 —— 弹性碰撞
    7 Ar++Ar→Ar+Ar+ 硬球碰撞 —— 电荷交换
    下载: 导出CSV
  • [1]

    Saenko A V, Tominov R V, Jityaev I L, Vakulov Z E, Avilov V I, Polupanov N V, Smirnov V A 2024 Nanomaterials 14 1901Google Scholar

    [2]

    Dhage S R, Badgujar A C 2018 J. Alloys Compd. 763 504Google Scholar

    [3]

    Chen J F, Ding X P, Wang J F, Xie Z Y, Wang S H 2024 J. Alloys Compd. 1002 175318Google Scholar

    [4]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661Google Scholar

    [5]

    Matthews S, De Bosscher W, Blondeel A, Van Holsbeke J, Delrue H 2008 Vacuum 83 518Google Scholar

    [6]

    Park J H, Ahn K J, Na S I, Kim H K 2011 Sol. Energy Mater. Sol. Cells 95 657Google Scholar

    [7]

    Park J H, Ahn K J, Park K I, Na S I, Kim H K 2010 J. Phys. D: Appl. Phys. 43 115101Google Scholar

    [8]

    Van Aeken K, Maheude S, Depla D 2008 J. Phys. D: Appl. Phys. 41 20

    [9]

    Fan Q H, Grago J J, Zhou L Q 2004 J. Appl. Phys. 95 6017Google Scholar

    [10]

    Teunissen J, Ebert U 2016 Plasma Sources Sci. Technol. 25 044005Google Scholar

    [11]

    Bogaerts A, Bultinck E, Kolev I, Schwaederlé L, Van Aeken K, Buyle G, Depla D 2009 J. Phys. D: Appl. Phys. 42 19

    [12]

    Musschoot J, Depla D, Buyle G, Haemers J, De Gryse R 2006 J. Phys. D: Appl. Phys. 39 18

    [13]

    Fu Y, Ji P, He M, Huang P, Huang G, Huang W 2024 Plasma Chem. Plasma Process. 44 601Google Scholar

    [14]

    Bogaerts A, Kolev I, Buyle G 2008 Modeling of the Magnetron Discharge (Berlin: Springer) pp61—130

    [15]

    Zhu G, Yang Y, Xiao B, Gan Z 2023 Molecules 28 7660Google Scholar

    [16]

    崔岁寒, 左伟, 黄健, 李熙腾, 陈秋皓, 郭宇翔, 杨超, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振 2023 物理学报 72 085202Google Scholar

    Cui S H, Zuo W, Huang J, Li X T, Chen Q H, Guo Y X, Yang C, Wu Z C, Ma Z Y, Fu J Y, Tian X B, Zhu J H, Wu Z Z 2023 Acta Phys. Sin. 72 085202Google Scholar

    [17]

    Kapran A, Ballage C, Hubicka Z, Minea T 2025 Vaccum 238 114324Google Scholar

    [18]

    Sabavath G K, Swaroop R, Singh J, Panda A B, Haldar S, Rao N, Mahapatra S K 2022 Plasma Phys. Rep. 48 548Google Scholar

    [19]

    Cui S H, Chen Q H, Guo Y X, Chen L, Jin Z, Li X T, Yang C, Wu Z C, Su X Y, Ma Z Y, Fu R K Y, Tian X B, Chu P K, Chu W Z 2022 J. Phys. D: Appl. Phys. 55 325203Google Scholar

    [20]

    Sirghi L, Aoki T, Hatanaka Y 2004 Surf. Coat. Technol. 187 358Google Scholar

    [21]

    Bultinck E, Kolev I, Bogaerts A, Depla D 2008 J. Appl. Phys. 103 013309Google Scholar

    [22]

    Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Liu L L, An X K, Fu R K Y, Tian X B, Tan W C, Chu P K 2019 J. Appl. Phys. 125 063302Google Scholar

    [23]

    Lennon M A, Bell K L, Gilbody H B, Hughes J G, Kingston A E, Murray M J, Smith F J 1988 J. Phys. Chem. Ref. Data 17 1285Google Scholar

    [24]

    沈向前, 谢泉, 肖清泉, 陈茜, 丰云 2012 物理学报 61 165101Google Scholar

    Shen X Q, Xie Q, Xiao Q Q, Chen Q, Feng Y 2012 Acta Phys. Sin. 61 165101Google Scholar

    [25]

    Chen L, Cui S H, Tang W, Zhou L, Li T, Liu L, An X, Wu Z, Ma Z, Lin H 2020 Plasma Sources Sci. Technol. 29 025016Google Scholar

    [26]

    Nanbu K, Konodo S 1997 Jpn. J. Appl. Phys. 36 4808Google Scholar

    [27]

    Shidoji E, Nemoto M, Nomura T 2000 J. Vac. Sci. Technol. A 18 2858Google Scholar

    [28]

    Mikolaychuk M, Knyazeva A 2014 AIP Conf. Proc. 1623 419Google Scholar

    [29]

    Liu H, Niu X, Yu D R 2019 J. Plasma Phys. 85 905850208Google Scholar

    [30]

    Rumble J R 2024 CRC Handbook of Chemistry and Physics (Florida: CRC Press) pp10—113

    [31]

    Shon C H, Lee J K 2002 Appl. Surf. Sci. 192 258Google Scholar

  • [1] 黄渝峰, 贾文柱, 张莹莹, 宋远红. 微重力条件下复杂等离子体中激光诱导马赫锥的三维模拟. 物理学报, doi: 10.7498/aps.73.20231849
    [2] 田淼, 姚廷昱, 才志民, 刘富成, 贺亚峰. 尘埃等离子体棘轮中颗粒分离的三维模拟. 物理学报, doi: 10.7498/aps.73.20240319
    [3] 徐子原, 周辉, 刘光翰, 高中亮, 丁丽, 雷凡. 三维行波磁场对等离子体鞘套密度的调控作用. 物理学报, doi: 10.7498/aps.73.20240877
    [4] 李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子. 托卡马克装置中等离子体环向旋转对三维响应场的影响. 物理学报, doi: 10.7498/aps.71.20211975
    [5] 朱海龙, 李雪迎, 童洪辉. 三维数值模拟射频热等离子体的物理场分布. 物理学报, doi: 10.7498/aps.70.20202135
    [6] 王振兴, 曹志远, 李瑞, 陈峰, 孙丽琼, 耿英三, 王建华. 纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟. 物理学报, doi: 10.7498/aps.70.20201701
    [7] 雷健平, 何立明, 陈一, 陈高成, 赵兵兵, 赵志宇, 张华磊, 邓俊, 费力. 旋转滑动弧放电等离子体滑动放电模式的实验研究. 物理学报, doi: 10.7498/aps.69.20200672
    [8] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, doi: 10.7498/aps.68.20190583
    [9] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟. 物理学报, doi: 10.7498/aps.66.025201
    [10] 易忠, 王松, 唐小金, 武占成, 张超. 不同温度下复杂介质结构内带电规律仿真分析. 物理学报, doi: 10.7498/aps.64.125201
    [11] 杨利霞, 沈丹华, 施卫东. 三维时变等离子体目标的电磁散射特性研究. 物理学报, doi: 10.7498/aps.62.104101
    [12] 何福顺, 李刘合, 李芬, 顿丹丹, 陶婵偲. 增强辉光放电等离子体离子注入的三维PIC/MC模拟. 物理学报, doi: 10.7498/aps.61.225203
    [13] 王道泳, 马锦秀, 李毅人, 张文贵. 等离子体中热阴极鞘层的结构. 物理学报, doi: 10.7498/aps.58.8432
    [14] 吴 翊, 荣命哲, 杨 飞, 王小华, 马 强, 王伟宗. 引入6波段P-1辐射模型的三维空气电弧等离子体数值分析. 物理学报, doi: 10.7498/aps.57.5761
    [15] 徐利军, 刘少斌, 莫锦军, 袁乃昌. 各向异性磁化等离子体涂敷三维导体目标FDTD分析. 物理学报, doi: 10.7498/aps.55.3470
    [16] 张永辉, 江金生, 常安碧. 空心阴极等离子体电子枪研究. 物理学报, doi: 10.7498/aps.52.1676
    [17] 李齐良, 郑永真, 程发银, 邓小波, 邓冬生, 游佩林, 刘贵昂, 陈向东. 托卡马克删削层与偏滤器中等离子体输运的解析研究. 物理学报, doi: 10.7498/aps.50.507
    [18] 宫野, 温晓军, 张鹏云, 邓新绿. 圆柱模型下电子回旋共振微波等离子体离子输运过程的数值研究. 物理学报, doi: 10.7498/aps.46.2376
    [19] 白秀庭, 周庭东. 辉光放电等离子体三维电流的理论分析. 物理学报, doi: 10.7498/aps.42.1463
    [20] 王海达. 氩气直流放电等离子体中三稳现象的半经典理论. 物理学报, doi: 10.7498/aps.39.1928
计量
  • 文章访问数:  293
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-28
  • 修回日期:  2025-05-21
  • 上网日期:  2025-06-06

/

返回文章
返回