搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浓度依赖的纤维蛋白凝块中的超声传播与冲击波形成数值研究

莫凡 张晓敏 赵志鹏 吴琼 郑朝超 张林林 赵立波 程可 刘曙东 唐戈

引用本文:
Citation:

浓度依赖的纤维蛋白凝块中的超声传播与冲击波形成数值研究

莫凡, 张晓敏, 赵志鹏, 吴琼, 郑朝超, 张林林, 赵立波, 程可, 刘曙东, 唐戈

Numerical study on ultrasonic propagation and shock wave formation in fibrin clots dependent on concentration

MO Fan, ZHANG Xiaomin, ZHAO Zhipeng, WU Qiong, ZHENG Chaochao, ZHANG Linlin, ZHAO Libo, CHENG Ke, LIU Shudong, TANG Ge
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 虽然空化效应与机械效应在超声溶栓中的作用机制已得到充分证实和深入研究,但是对于血栓类生物材料,其浓度依赖的应变硬化特性对超声诱导冲击波效应的影响仍受到广泛关注。其中,快速的冲击波形成的空间定位与能量阈值的确定对临床治疗方案的优化具有重要指导价值。
    本研究通过准静态单轴压缩实验,建立了纤维蛋白浓度依赖的幂律本构模型。基于凝块本构方程与非线性波动方程,研究了超声在凝块介质中传播的动力学特性。数值模拟结果表明:冲击波形成前的应力强间断现象源于凝块渐增硬化特性导致的位移突变;基于阈值限制的平均陡峭因子(ASF,Average Steepening Factor)冲击波定位判据受网格收敛性严重制约,而总谐波失真(THD,Total Harmonic Distortion)截断误差敏感性相对较低,基于THD定位判据的峰值应力显著高于前者且具有计算成本优势。参数化研究表明,纤维蛋白浓度增加导致冲击波形成位置延后且峰值应力增加。本研究为临床超声溶栓治疗中冲击波效应的快速定位和灵活调控提供了理论依据。
    Ultrasound thrombolysis stands out among various treatment methods due to its safety and high efficiency. While the cavitation and mechanical mechanisms underlying this technique are well-established, the impact of the concentration-dependent strain hardening properties of thrombotic biomaterials on ultrasound-induced shockwave effects remains a subject of considerable interest. Furthermore, the extremely short time window for effective clinical intervention necessitates precise spatial localization of rapidly formed shockwaves and determination of their energy thresholds for optimizing treatment protocols.
    Considering that the primary mechanical properties of blood clots are dominated by the fibrin network, their stress-strain relationship exhibits a pronounced dependence on fibrin concentration. A power-law constitutive equation capable of characterizing the progressive hardening characteristics of clots was proposed here, based on results obtained from quasi-static compression tests performed on clots with varying fibrin concentrations. By employing the wave speed alterations induced by strain-hardening characteristics, which were incorporated into a third-order nonlinear ultrasound propagation wave equation, the dynamic characteristics underlying shock wave formation during ultrasound propagation through clot media were examined via numerical simulations. Results revealed that the pronounced stress discontinuity preceding this process originated from a sudden displacement change caused by the clot's progressive hardening. To accurately pinpoint the initiation location, the Average Steepening Factor (ASF), based on threshold limitation, was employed for localization. However, this method was severely constrained by mesh convergence issues, and improvements in finite precision incurred exponential increases in computational time. In contrast, the Total Harmonic Distortion (THD), utilizing the extremum of frequency-domain energy for localization, demonstrated lower sensitivity to truncation errors and offered computational efficiency advantages. Parametric analysis indicated a maximum localization error of 2.55% between the two methods, with the peak stress determined by the THD criterion being significantly higher than that identified by the ASF method.
    Based on experimentally fitted constitutive equations for different concentrations, numerical simulations of wave propagation indicated that increasing fibrin concentration delayed the shockwave formation position by 91.7% and increased the peak stress by 60% according to the THD criterion, due to fibrin concentration increasing from 10 mg/mL to 35 mg/mL. Corresponding fitting formulas were derived. Through real-time THD feedback and acoustic field parameter regulation, a theoretical basis is provided for the rapid localization and flexible control of shockwave effects in clinical ultrasound thrombolysis.
  • [1]

    Chen C Y, Zhou L L, Ying J 2023 Chin. Modern Med. 30 27 (in Chinses) [陈春燕, 周兰兰, 应杰, 2023 中国当代医药 30 27]

    [2]

    Amuluru K, Nguyen J, Al-Mufti F, Denardo A, Scott J, Yavagal D, Sahlein D H 2022 J. Stroke Cerebrovasc. 31 106553

    [3]

    Nedelmann M, Eicke B M, Lierke E G, Heimann A, Kempski O, Hopf H C 2002 J. Ultras. Med. 21 649

    [4]

    Behrens S, Daffertshofer M, Spiegel D, Hennerici M 1999 Ultrasound Med. Biol. 25 269

    [5]

    Qian J, Xie W, Zhou X W, Tan J W, Wang Z B, Du Y H, Li Y H 2022 Acta Phys. Sin. 71 275 (in Chinese) [钱骏, 谢伟, 周小伟, 谭坚文, 王智彪, 杜永洪, 李雁浩, 2022 物理学报 71 275]

    [6]

    Chernysh I N, Everbach C E, Purohit P K, Weisel J W 2015 J. Thromb. Haemost. 13 601

    [7]

    Datta S, Coussios C-C, McAdory L E, Tan J, Porter T, De Courten-Myers G, Holland C K 2006 Ultrasound Med. Biol. 32 1257

    [8]

    Kagami S, Kanagawa T 2022 Ultrason. Sonochem. 88 105911

    [9]

    Xu L, Wang Y 2023 Acta Phys. Sin. 72 153 (in Chinese) [许龙, 汪尧, 2023 物理学报 72 153]

    [10]

    Wang X, Wang H, Wu M, Li L, Zhao B 2024 Ceram. Int. 50 42247

    [11]

    Meng B, Cao B N, Wan M, Wang C J, Shan D B 2019 Int. J. Mech. Sci. 157–158 609

    [12]

    Chen Z J, Zhang S Y, Zheng K 2010 Acta Phys. Sin. 59 4071 (in Chinese) [陈赵江, 张淑仪, 郑凯, 2010 物理学报 59 4071]

    [13]

    Zhao J, Su H, Wu C 2020 J. Mater. Res. Technol. 9 14895

    [14]

    Meng Y, Ma L, Jia W, Huang Z, Xie H, Ning F, Lei J 2024 J. Mater. Res. Technol. 28 2138

    [15]

    Johnson S, McCarthy R, Gilvarry M, McHugh P E, McGarry J P 2021 Ann. Biomed. Eng. 49 420

    [16]

    Piechocka I K, Bacabac R G, Potters M, MacKintosh F C, Koenderink G H 2010 Biophys. J. 98 2281

    [17]

    Ramanujam R K, Maksudov F, Litvinov R I, Nagaswami C, Weisel J W, Tutwiler V, Barsegov V 2023 Adv. Healthcare Mater. 12 2300096

    [18]

    Ariëns R A, Sharp A S, Duval C 2024 Haematol-hematol J. 110 21

    [19]

    Adzerikho I E, Mrochek A G, Minchenya V T, Dmitriev V V, Kulak A I 2011 Ultrasound Med. Biol. 37 1644

    [20]

    Adzerikho I, Kulak A, Rachok S, Minchenya V 2022 Ultrasound Med. Biol. 48 846

    [21]

    Tang J, Tang J, Liao Y, Bai L, Luo T, Xu Y, Liu Z 2024 Heliyon 10 e26624

    [22]

    Cherniavsky E A, Strakha I S, Adzerikho I E, Shkumatov V M 2011 BMC Biochem 12 60

    [23]

    Roohi R, Baroumand S, Hosseinie R, Ahmadi G 2021 Int. Commun. Heat Mass 120 105002

    [24]

    Purrington R D, Norton G V 2012 Math. Comput. Simulat. 82 1287

    [25]

    Sheng R, Zhang J 2022 Appl. Acoust. 195 108867

    [26]

    Ramos J I 2020 Int. J. Eng. Sci. 149 103226

    [27]

    Alarcón H, Galaz B, Espíndola D 2025 Ultrasonics 145 107469

    [28]

    Qu J 2025 Ultrasonics 151 107621

    [29]

    Muhlestein M B, Gee K L, Nielsen T B, Thomas D C 2013 J. Acoust. Soc. Am. 134 3981

    [30]

    Muhlestein M B, Gee K L, Neilsen T B, Thomas D C 2015 J. Acoust. Soc. Am. 137 640

    [31]

    Ren W, Xie W, Zhang Y, Yu H, Tian Z 2025 J. Comput. Phys. 523 113649

    [32]

    Nguyen N C, Van Heyningen R L, Vila-Pérez J, Peraire J 2024 J. Comput. Phys. 508 113005

    [33]

    Malkin R, Kappus B, Long B, Price A 2023 J. Sound Vib. 552 117644

    [34]

    Piechocka I K, Bacabac R G, Potters M, MacKintosh F C, Koenderink G H 2010 Biophys. J. 98 2281

    [35]

    Pattofatto S, Elnasri I, Zhao H, Tsitsiris H, Hild F, Girard Y 2007 J. Mech. Phys. Solids 55 2672

    [36]

    Zhao G, Liu S, Zhang C, Jin L, Yang Q 2022 Vacuum 197 110841

    [37]

    Norris A N 2024 Nonlinear Acoustics (Cham: Springer Nature Switzerland) p259

    [38]

    Thurston R N 1974 Mechanics of Solids (Berlin: Springer Verlag) p109

    [39]

    Wang L L 2005 Foundation of Stress Waves (Vol. 2) (Beijing: National Defense Industry Press) p7 (in Chinese) [王礼立 2005 应力波基础(第2版)(北京:国防工业出版社) 第7页]

    [40]

    Du G H 2001 Foundation of Acoustics (Vol. 2) (Jiangsu: Nanjing University Press) p479 (in Chinese) [杜功焕 2001 声学基础(第2版)(江苏:南京大学出版社) 第479页]

    [41]

    Xia L 2019 J. Acoust. Soc. Am. 146 1394

    [42]

    Niu H J 2017 Principles of Ultrasound and Applications in Biomedical Engineering (Vol. 2) (Shanghai: Shanghai Jiao Tong University Press) p11 (in Chinese) [牛金海 2017 超声原理及生物医学工程应用(第2版)(上海:上海交通大学出版社) 第11页]

    [43]

    Gong X F, Zhang D 2005 J. Appl. Acoust 24 208 (in Chinese) [龚秀芬, 章东, 2005 应用声学 24 208]

    [44]

    Tutwiler V, Maksudov F, Litvinov R I, Weisel J W, Barsegov V 2021 Acta Biomater. 131 355

    [45]

    Depalle B, Qin Z, Shefelbine S J, Buehler M J 2015 J. Mech. Behav. Biomed. Mater. 52 1

    [46]

    Sekkal W, Zaoui A, Benzerzour M, Abriak N 2016 Cem. Concr. Res. 87 45

  • [1] 贾宇皓, 张晓敏, 赵志鹏, 吴琼, 张林林. 超声溶栓中多气泡协同空蚀效应的数值分析. 物理学报, doi: 10.7498/aps.74.20250430
    [2] 王金玲, 张昆, 林机, 李慧军. 二维激子-极化子凝聚体中冲击波的产生与调控. 物理学报, doi: 10.7498/aps.73.20240229
    [3] 杨为明, 段晓溪, 张琛, 理玉龙, 刘浩, 关赞洋, 章欢, 孙亮, 董云松, 杨冬, 王哲斌, 杨家敏. 小尺度靶丸冲击波调控的冲击波测量技术优化及应用. 物理学报, doi: 10.7498/aps.73.20232000
    [4] 王智环, 贾雷明, 何增, 田宙. 冲击载荷下线性硬化材料中球面应力波场的理论计算方法研究. 物理学报, doi: 10.7498/aps.71.20210954
    [5] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析. 物理学报, doi: 10.7498/aps.70.20210058
    [6] 丁兆楠, 杨义涛, 宋银, 张丽卿, 缑洁, 张崇宏, 罗广南. 高能重离子辐照的低活化钢硬化效应. 物理学报, doi: 10.7498/aps.66.112501
    [7] 何民卿, 董全力, 盛政明, 张杰. 激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究. 物理学报, doi: 10.7498/aps.64.105202
    [8] 王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤. 基于速度干涉仪的冲击波精密调速实验技术研究. 物理学报, doi: 10.7498/aps.61.135201
    [9] 喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮. 多孔脆性介质冲击波压缩破坏的细观机理和图像. 物理学报, doi: 10.7498/aps.61.048103
    [10] 王峰, 彭晓世, 刘慎业, 蒋小华, 徐涛, 丁永坤, 张保汉. 三明治靶型在间接驱动冲击波实验中的应用. 物理学报, doi: 10.7498/aps.60.115203
    [11] 王峰, 彭晓世, 刘慎业, 蒋小华, 丁永坤. 利用成像型速度干涉仪进行聚苯乙烯材料中冲击波调速的实验研究. 物理学报, doi: 10.7498/aps.60.085203
    [12] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, doi: 10.7498/aps.59.1225
    [13] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究. 物理学报, doi: 10.7498/aps.58.363
    [14] 俞宇颖, 谭 华, 胡建波, 戴诚达, 陈大年, 王焕然. 冲击波作用下铝的等效剪切模量. 物理学报, doi: 10.7498/aps.57.2352
    [15] 蒋冬冬, 杜金梅, 谷 岩, 冯玉军. 冲击波加载下PZT 95/5铁电陶瓷的电阻率研究. 物理学报, doi: 10.7498/aps.57.566
    [16] 张 翼, 郑志远, 李玉同, 刘 峰, 李汉明, 鲁 欣, 张 杰. 两个冲击波相互碰撞的演化过程. 物理学报, doi: 10.7498/aps.56.5931
    [17] 卞保民, 杨 玲, 张 平, 纪运景, 李振华, 倪晓武. 理想气体球面强冲击波一般自模拟运动模型. 物理学报, doi: 10.7498/aps.55.4181
    [18] 顾永玉, 张永康, 张兴权, 史建国. 约束层对激光驱动冲击波压力影响机理的理论研究. 物理学报, doi: 10.7498/aps.55.5885
    [19] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, doi: 10.7498/aps.55.5545
    [20] 顾援, 倪元龙, 王勇刚, 毛楚生, 吴逢春, 吴江, 朱俭, 万炳根. 激光驱动高压冲击波的实验观察. 物理学报, doi: 10.7498/aps.37.1690
计量
  • 文章访问数:  103
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-11

/

返回文章
返回