搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声溶栓中多气泡协同空蚀效应的数值分析

贾宇皓 张晓敏 赵志鹏 吴琼 张林林

引用本文:
Citation:

超声溶栓中多气泡协同空蚀效应的数值分析

贾宇皓, 张晓敏, 赵志鹏, 吴琼, 张林林
cstr: 32037.14.aps.74.20250430

Numerical analysis of synergistic cavitation effect of multiple bubbles in ultrasound thrombolysis

JIA Yuhao, ZHANG Xiaomin, ZHAO Zhipeng, WU Qiong, ZHANG Linlin
cstr: 32037.14.aps.74.20250430
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 超声溶栓的核心机制源于空化气泡溃灭产生的瞬态冲击波与微射流对血栓结构的破坏作用. 尽管该效应已在实验与临床中被证实具备溶栓潜力, 但其疗效受限于空化作用能量传递效率低和损伤可控性差等问题, 其本质在于单气泡空蚀效应不足与多气泡协同作用规律不明确. 本研究通过构建气-液-固多物理场耦合模型来量化分析血栓附近空化气泡溃灭动力学特性, 流-固耦合部分引入结构阻尼项来表征血栓运动过程中的能量耗散; 在此基础上, 结合参数分析详细讨论了多气泡射流序列冲击作用下的协同效应, 其对应力累积的影响完全考虑了血栓的力学特性, 即结合实验确定的超-黏弹性血栓本构模型. 数值模拟表明射流冲击强度与血栓质量、超声振幅正相关, 与无量纲距离、超声频率、气泡初始半径负相关; 多气泡协同效应存在相对优化的半径分布范围, 通过射流序列匹配可使血栓内部正应力或剪应力获得显著增幅. 建议给出的协同空蚀效应预测方程为超声溶栓控制策略提供了理论依据.
    Ultrasound thrombolysis primarily relies on transient shockwaves and microjets from collapsing cavitation bubbles to mechanically disrupt thrombus structures. Although it shows clinical potential, its efficacy is still limited by low cavitation energy transfer efficiency and unpredictable tissue damage, due to incomplete understanding of single bubble dynamics and the synergistic mechanisms of multi-bubble interactions.This study introduces a hyper-viscoelastic constitutive model incorporating blood clot mechanics to analyze stress accumulation under sequential microbubble impacts. A gas-liquid-solid coupling multi-physics model quantifies bubble collapse dynamics near thrombi, and integrates structural damping terms to represent energy dissipation during fluid-solid interactions. Parameter analysis shows that the intensity of jet impact is positively correlated with thrombus mass and ultrasound amplitude, but inversely related to dimensionless distance, ultrasound frequency, and initial bubble radius.The proposed rate-dependent Ogden-Prony model effectively captures thrombus behaviors under transient impacts, including strain hardening, rate-dependent strengthening, and stress relaxation. Sequential jet impacts induce cumulative stress through strain hardening, with multi-bubble synergy achieving significantly higher stresses than single-bubble impact. Optimal bubble radius distribution can amplify the normal/shear stress inside thrombi—maximum normal stress generated by the double bubble impact sequences is 6.02 MPa, exceeding the tensile strength of the thrombus, while the maximum stress generated by single bubble impact is 1.45 MPa. The key quantitative relationships between bubble cluster parameters, dimensionless distance, thrombus mass, and stress accumulation provide optimization guidelines for ultrasound thrombolysis. Notably, controlled multi-bubble jet impact sequences with attenuated pressure peaks demonstrate enhanced therapeutic potential through cumulative mechanical effects rather than a single high-intensity impact.
      通信作者: 张晓敏, xiaomin@cqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12272065)和中国重庆市研究生科研创新项目(批准号: CYB22026)资助的课题.
      Corresponding author: ZHANG Xiaomin, xiaomin@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12272065) and the Graduate Research Innovation Project in Chongqing, China (Grant No. CYB22026).
    [1]

    Millett E R C, Peters S A E, Woodward M 2018 Br. Med. J. 363 k4247

    [2]

    GBD 2017 Causes of Death Collaborators (CORPORATE) 2018 Lancet 392 1736Google Scholar

    [3]

    Ren S T, Long L H, Wang M, Li Y P, Qin H, Zhang H, Jing B B, Li Y X, Zang W J, Wang B, Shen X L 2012 J. Thromb. Thrombolysis 33 74Google Scholar

    [4]

    Alexandrov A V, Köhrmann M, Soinne L, et al. 2019 Lancet Neurol. 18 338Google Scholar

    [5]

    夏青青, 刘俐 2019 心血管病学进展 40 564

    Xia Q Q, Liu L 2019 Adv. Cardiovasc. Dis. 40 564

    [6]

    Papadopoulos N, Kyriacou P A, Damianou C 2017 J. Stroke Cerebrovasc. 26 2447Google Scholar

    [7]

    Bußmann A, Riahi F, Gökce B, Adami S, Barcikowski S, Adams N A 2023 Phys. Fluids 35 016115Google Scholar

    [8]

    Iga Y, Sasaki H 2023 Phys. Fluids 35 023312Google Scholar

    [9]

    Bokman G T, Biasiori P L, Lukić B, Bourquard C, Meyer D W, Rack A, Supponen O 2023 Phys. Fluids 35 013322Google Scholar

    [10]

    Li S, Zhang A M, Han R 2018 Phys. Fluids 30 121703Google Scholar

    [11]

    Reese H, Ohl S W, Ohl C D 2023 Phys. Fluids 35 076122Google Scholar

    [12]

    Ren Z B, Han H, Zeng H, Sun C, Tagawa Y, Zuo Z G, Liu S H 2023 J. Fluid Mech. 976 A11Google Scholar

    [13]

    Turangan C K, Ong G P, Klaseboer E, Khoo B C 2006 J. Appl. Phys. 100 054910Google Scholar

    [14]

    Brujan E A, Zhang A M, Liu Y L, Ogasawara T, Takahira H 2022 J. Fluid Mech. 948 A6Google Scholar

    [15]

    Andrews E D, Rivas D F, Peters I R 2023 J. Fluid Mech. 962 A11Google Scholar

    [16]

    Li S, Zhang A M, Han R, Liu Y Q 2017 Phys. Fluids 29 092102Google Scholar

    [17]

    王德鑫, 那仁满都拉 2018 物理学报 67 037802Google Scholar

    Wang D X, Naranmandula 2018 Acta Phys. Sin. 67 037802Google Scholar

    [18]

    Zhang L L, Chen W Z, Wu Y R, Shen Y, Zhao G Y 2021 Chin. Phys. B 30 104301Google Scholar

    [19]

    Shen Y, Zhang L L, Wu Y R, Chen W Z 2021 Ultrason. Sonochem. 73 105535Google Scholar

    [20]

    Fong S W, Adhikari D, Klaseboer E, Khoo B C 2009 Exp. Fluids 46 705Google Scholar

    [21]

    Bremond N, Arora M, Ohl C D, Lohse D 2005 Phys. Fluids 17 091111Google Scholar

    [22]

    Lauterborn W, Hentschel W 1985 Ultrasonics 23 260Google Scholar

    [23]

    Zhang A M, Yao X L 2008 Chin. Phys. B 17 927Google Scholar

    [24]

    徐珂, 许龙, 周光平 2021 物理学报 70 194301Google Scholar

    Xu K, Xu L, Zhou G P 2021 Acta Phys. Sin. 70 194301Google Scholar

    [25]

    Qin D, Lei S, Zhang B Y, Liu Y P, Tian J, Ji X J, Yang H 2024 Ultrason. Sonochem. 104 106808Google Scholar

    [26]

    许龙, 汪尧 2023 物理学报 72 024303Google Scholar

    Xu L, Wang Y 2023 Acta Phys. Sin. 72 024303Google Scholar

    [27]

    Wang X, Chen W Z, Zhou M, Zhang Z K, Zhang L L 2022 Ultrason. Sonochem. 84 105952Google Scholar

    [28]

    张凌新, 闻仲卿, 邵雪明 2013 力学学报 45 861

    Zhang L X, Wen Z Q, Shao X M 2013 Chin. J. Theor. Appl. Mech. 45 861

    [29]

    Terasaki S, Kiyama A, Kang D, Tomita Y, Sato K 2024 Phys. Fluids 36 012115Google Scholar

    [30]

    Hong S, Son G 2023 Ultrason. Sonochem. 92 106252Google Scholar

    [31]

    Sankin G N, Yuan F, Zhong P 2010 Phys. Rev. Lett. 105 078101Google Scholar

    [32]

    Lauer E, Hu X Y, Hickel S, Adams N A 2012 Phys. Fluids 24 052104Google Scholar

    [33]

    Chahine G L, Hsiao C T 2015 Interface Focus 5 20150016Google Scholar

    [34]

    Ochiai N, Ishimoto J 2017 J. Fluid Mech. 818 562Google Scholar

    [35]

    Ochiai N, Ishimoto J 2020 Ultrason. Sonochem. 61 104818Google Scholar

    [36]

    Hosseinkhah N, Hynynen K 2012 Phys. Med. Biol. 57 785Google Scholar

    [37]

    Ri J, Pang N, Bai S, Xu J L, Xu L S, Ri S, Yao Y D, Greenwald S E 2023 Phys. Fluids 35 011904Google Scholar

    [38]

    Chetty A, Kovacs J, Sulyok Z, Meszaros A, Fekete J, Domjan A, Szilagyi A, Vargha V 2013 Express Polym. Lett. 7 95Google Scholar

    [39]

    Ma X J, Huang B, Zhao X, Wang Y, Chang Q, Qiu S C, Fu X Y, Wang G Y 2018 Ultrason. Sonochem. 43 80Google Scholar

    [40]

    Cahalane R M E, de Vries J J, de Maat M P M, van Gaalen K, van Beusekom H M, van der Lugt A, Fereidoonnezhad B, Akyildiz A C, Gijsen F J H 2023 Ann. Biomed. Eng. 51 1759Google Scholar

    [41]

    Kim T H, Kim H Y 2014 J. Fluid Mech. 750 355Google Scholar

    [42]

    Vyas N, Dehghani H, Sammons R L, Wang Q X, Leppinen D M, Walmsley A D 2017 Ultrasonics 81 66Google Scholar

    [43]

    Liu Y, Zheng Y, Reddy A S, et al. 2021 J. Neurosurg. 134 893Google Scholar

    [44]

    Maksudov F, Daraei A, Sesha A, Marx K A, Guthold M, Barsegov V 2021 Acta Biomater. 136 327Google Scholar

    [45]

    Tomita Y, Shima A, Ohno T 1984 J. Appl. Phys. 56 125Google Scholar

  • 图 1  血栓附近超声空化模型示意图

    Fig. 1.  Schematic diagram of ultrasound cavitation model near thrombus.

    图 2  气泡半径的数值解与实验数据的对比

    Fig. 2.  Comparison between numerical solution of bubble radius and experimental data.

    图 3  超声作用下血栓附近空化气泡演化压力云图(黑色实线为气泡轮廓) (a) t = 17.9 μs; (b) t = 38.2 μs; (c) t = 39.3 μs; (d) t = 40.7 μs

    Fig. 3.  Evolution pressure cloud map of cavitation bubbles near thrombus under ultrasound (black solid line represents bubble contour): (a) t = 17.9 μs; (b) t = 38.2 μs; (c) t = 39.3 μs; (d) t = 40.7 μs.

    图 4  (a)超声振幅对壁面冲击的影响; (b)超声频率对壁面冲击的影响

    Fig. 4.  (a) Influence of ultrasonic amplitude on wall impact; (b) influence of ultrasonic frequency on wall impact.

    图 5  (a)血栓质量对壁面冲击的影响; (b)近壁距离对壁面冲击的影响; (c)气泡初始半径对壁面冲击的影响

    Fig. 5.  (a) Influence of thrombus quality on wall impact; (b) influence of close wall distance on wall impact; (c) influence of initial bubble radius on wall impact.

    图 6  (a)准静态下应力-应变曲线对比, Ogden模型参数${\mu _1} = 5946.78{\text{ }}{\mathrm{Pa}}$, ${\alpha _1} = 11.05$; (b)不同加载速率下血栓应力-应变响应, Prony级数参数${g_i} = \left[ {0.2, 0.2, 0.1, 0.1, 0.1} \right]$, ${\tau _i} = \left[ {1 \times {{10}^{ - 6}}, 5 \times {{10}^{ - 5}}, 1 \times {{10}^{ - 3}}, 0.1, 10} \right]{\text{ }}{\mathrm{s}}$; (c)不同应变-加载速率下的应力时程曲线

    Fig. 6.  (a) Comparison of stress-strain curves under quasi-static conditions, Ogden model parameters:${\mu _1} = 5946.78{\text{ }}{\mathrm{Pa}}$, ${\alpha _1} = 11.05$; (b) stress strain response of thrombus under different loading rates, Prony series parameters: ${g_i} = $$ \left[ {0.2, 0.2, 0.1, 0.1, 0.1} \right]$, ${\tau _i} = [ 1 \times {{10}^{ - 6}}, 5 \times {{10}^{ - 5}}, 1 \times {{10}^{ - 3}}, $$ 0.1, 10 ]{\text{ }}{\mathrm{s}}$; (c) stress time history curves under different strain loading rates.

    图 7  气泡初始半径对射流冲击到达时间及压力峰值的影响

    Fig. 7.  The influence of initial bubble radius on the arrival time and pressure peak of jet impact.

    图 8  双气泡冲击载荷序列构建 (a) ΔR/Rc > 8.3%; (b) ΔR/Rc ≤ 8.3%

    Fig. 8.  Construction of double bubble impact load sequence: (a) ΔR/Rc > 8.3%; (b) ΔR/Rc ≤ 8.3%.

    图 9  射流冲击血栓模型示意图

    Fig. 9.  Schematic diagram of jet impingement thrombus model.

    图 10  血栓内剪应力分布(AB为凹陷侧截线) (a) t = 4.6 μs; (b) t = 5.0 μs; (c) t = 20.0 μs;血栓内正应力分布(CD为轴线) (d) t = 4.6 μs; (e) t = 5.5 μs; (f) t = 20.0 μs

    Fig. 10.  The distribution of shear stress within the thrombus, where AB is the concave side intercept line: (a) t = 4.6 μs; (b) t = 5.0 μs; (c) t = 20.0 μs; normal stress distribution within the thrombus, with CD as the axis: (d) t = 4.6 μs; (e) t = 5.5 μs; (f) t = 20.0 μs.

    图 11  (a)双气泡冲击下截线AB上剪应力时空演变; (b)双气泡冲击下轴线上距壁面0.2 mm位置处正应力应变响应

    Fig. 11.  (a) Temporal and spatial evolution of shear stress on section AB under double bubble impact; (b) normal stress-strain response at a distance of 0.2 mm from the wall on the axis under double bubble impact.

    图 12  泡群初始半径分布范围对应力累积效应的影响

    Fig. 12.  Influence of initial radius distribution range of bubble group on stress accumulation effect.

    图 13  最大冲击压力PDmax/PSmax与间距S/R之间的关系(PDmax为双气泡最大冲击压力, PSmax为单气泡最大冲击压力, S为两个气泡中心的间距, R为气泡半径)

    Fig. 13.  The relationship between the maximum impact pressure PDmax/PSmax and the interval S/R (PDmax is the maximum impact pressure of a double bubble, PSmax is the maximum impact pressure of a single bubble, S is the distance between the centers of two bubbles, and R is the bubble radius).

    图 14  泡间耦合效应对血栓内应力累积效果的影响

    Fig. 14.  Influence of bubble coupling effect on stress accumulation effect in thrombus.

    图 15  剪应力增幅η的三维云图

    Fig. 15.  Three dimensional cloud map of shear stress amplification η.

    表 1  仿真中使用的参数值

    Table 1.  Parameter values used in simulation.

    参数 参数值
    参考压力 ${p_0}$/Pa 101325
    血液密度 ${\rho _0}$/(kg·m–3) 1059
    血液黏度 ${\mu _{\text{l}}}$/(Pa·s) 0.005
    血液体积模量 ${K_0}$/GPa 2.5
    血液密度指数 $n$ 7.15
    血液表面张力系数 $\sigma $/(N·m–1) 0.072
    损耗因子[38] $\tilde \eta $ 0.03
    气体黏度${\mu _{\text{g}}}$/(Pa·s) $1.34 \times 1{0^{ - 5}}$
    下载: 导出CSV

    表 2  泡群初始半径分布设计(以中心半径Rc = 60 μm 为基准)

    Table 2.  Design of initial radius distribution for bubble groups (based on the center radius Rc = 60 μm).

    分布范围
    R/Rc)/%
    半径区间/μmRmaxRmin
    射流时序差/μs
    1.759—610.4
    3.358—620.9
    5.057—631.3
    8.355—652.2
    16.750—704.4
    33.340—809.0
    下载: 导出CSV
  • [1]

    Millett E R C, Peters S A E, Woodward M 2018 Br. Med. J. 363 k4247

    [2]

    GBD 2017 Causes of Death Collaborators (CORPORATE) 2018 Lancet 392 1736Google Scholar

    [3]

    Ren S T, Long L H, Wang M, Li Y P, Qin H, Zhang H, Jing B B, Li Y X, Zang W J, Wang B, Shen X L 2012 J. Thromb. Thrombolysis 33 74Google Scholar

    [4]

    Alexandrov A V, Köhrmann M, Soinne L, et al. 2019 Lancet Neurol. 18 338Google Scholar

    [5]

    夏青青, 刘俐 2019 心血管病学进展 40 564

    Xia Q Q, Liu L 2019 Adv. Cardiovasc. Dis. 40 564

    [6]

    Papadopoulos N, Kyriacou P A, Damianou C 2017 J. Stroke Cerebrovasc. 26 2447Google Scholar

    [7]

    Bußmann A, Riahi F, Gökce B, Adami S, Barcikowski S, Adams N A 2023 Phys. Fluids 35 016115Google Scholar

    [8]

    Iga Y, Sasaki H 2023 Phys. Fluids 35 023312Google Scholar

    [9]

    Bokman G T, Biasiori P L, Lukić B, Bourquard C, Meyer D W, Rack A, Supponen O 2023 Phys. Fluids 35 013322Google Scholar

    [10]

    Li S, Zhang A M, Han R 2018 Phys. Fluids 30 121703Google Scholar

    [11]

    Reese H, Ohl S W, Ohl C D 2023 Phys. Fluids 35 076122Google Scholar

    [12]

    Ren Z B, Han H, Zeng H, Sun C, Tagawa Y, Zuo Z G, Liu S H 2023 J. Fluid Mech. 976 A11Google Scholar

    [13]

    Turangan C K, Ong G P, Klaseboer E, Khoo B C 2006 J. Appl. Phys. 100 054910Google Scholar

    [14]

    Brujan E A, Zhang A M, Liu Y L, Ogasawara T, Takahira H 2022 J. Fluid Mech. 948 A6Google Scholar

    [15]

    Andrews E D, Rivas D F, Peters I R 2023 J. Fluid Mech. 962 A11Google Scholar

    [16]

    Li S, Zhang A M, Han R, Liu Y Q 2017 Phys. Fluids 29 092102Google Scholar

    [17]

    王德鑫, 那仁满都拉 2018 物理学报 67 037802Google Scholar

    Wang D X, Naranmandula 2018 Acta Phys. Sin. 67 037802Google Scholar

    [18]

    Zhang L L, Chen W Z, Wu Y R, Shen Y, Zhao G Y 2021 Chin. Phys. B 30 104301Google Scholar

    [19]

    Shen Y, Zhang L L, Wu Y R, Chen W Z 2021 Ultrason. Sonochem. 73 105535Google Scholar

    [20]

    Fong S W, Adhikari D, Klaseboer E, Khoo B C 2009 Exp. Fluids 46 705Google Scholar

    [21]

    Bremond N, Arora M, Ohl C D, Lohse D 2005 Phys. Fluids 17 091111Google Scholar

    [22]

    Lauterborn W, Hentschel W 1985 Ultrasonics 23 260Google Scholar

    [23]

    Zhang A M, Yao X L 2008 Chin. Phys. B 17 927Google Scholar

    [24]

    徐珂, 许龙, 周光平 2021 物理学报 70 194301Google Scholar

    Xu K, Xu L, Zhou G P 2021 Acta Phys. Sin. 70 194301Google Scholar

    [25]

    Qin D, Lei S, Zhang B Y, Liu Y P, Tian J, Ji X J, Yang H 2024 Ultrason. Sonochem. 104 106808Google Scholar

    [26]

    许龙, 汪尧 2023 物理学报 72 024303Google Scholar

    Xu L, Wang Y 2023 Acta Phys. Sin. 72 024303Google Scholar

    [27]

    Wang X, Chen W Z, Zhou M, Zhang Z K, Zhang L L 2022 Ultrason. Sonochem. 84 105952Google Scholar

    [28]

    张凌新, 闻仲卿, 邵雪明 2013 力学学报 45 861

    Zhang L X, Wen Z Q, Shao X M 2013 Chin. J. Theor. Appl. Mech. 45 861

    [29]

    Terasaki S, Kiyama A, Kang D, Tomita Y, Sato K 2024 Phys. Fluids 36 012115Google Scholar

    [30]

    Hong S, Son G 2023 Ultrason. Sonochem. 92 106252Google Scholar

    [31]

    Sankin G N, Yuan F, Zhong P 2010 Phys. Rev. Lett. 105 078101Google Scholar

    [32]

    Lauer E, Hu X Y, Hickel S, Adams N A 2012 Phys. Fluids 24 052104Google Scholar

    [33]

    Chahine G L, Hsiao C T 2015 Interface Focus 5 20150016Google Scholar

    [34]

    Ochiai N, Ishimoto J 2017 J. Fluid Mech. 818 562Google Scholar

    [35]

    Ochiai N, Ishimoto J 2020 Ultrason. Sonochem. 61 104818Google Scholar

    [36]

    Hosseinkhah N, Hynynen K 2012 Phys. Med. Biol. 57 785Google Scholar

    [37]

    Ri J, Pang N, Bai S, Xu J L, Xu L S, Ri S, Yao Y D, Greenwald S E 2023 Phys. Fluids 35 011904Google Scholar

    [38]

    Chetty A, Kovacs J, Sulyok Z, Meszaros A, Fekete J, Domjan A, Szilagyi A, Vargha V 2013 Express Polym. Lett. 7 95Google Scholar

    [39]

    Ma X J, Huang B, Zhao X, Wang Y, Chang Q, Qiu S C, Fu X Y, Wang G Y 2018 Ultrason. Sonochem. 43 80Google Scholar

    [40]

    Cahalane R M E, de Vries J J, de Maat M P M, van Gaalen K, van Beusekom H M, van der Lugt A, Fereidoonnezhad B, Akyildiz A C, Gijsen F J H 2023 Ann. Biomed. Eng. 51 1759Google Scholar

    [41]

    Kim T H, Kim H Y 2014 J. Fluid Mech. 750 355Google Scholar

    [42]

    Vyas N, Dehghani H, Sammons R L, Wang Q X, Leppinen D M, Walmsley A D 2017 Ultrasonics 81 66Google Scholar

    [43]

    Liu Y, Zheng Y, Reddy A S, et al. 2021 J. Neurosurg. 134 893Google Scholar

    [44]

    Maksudov F, Daraei A, Sesha A, Marx K A, Guthold M, Barsegov V 2021 Acta Biomater. 136 327Google Scholar

    [45]

    Tomita Y, Shima A, Ohno T 1984 J. Appl. Phys. 56 125Google Scholar

  • [1] 彭治钢, 白豪杰, 刘方, 李洋, 何欢, 李培, 贺朝会, 李永宏. 质子累积辐照效应对CMOS图像传感器饱和输出的影响. 物理学报, 2025, 74(2): 024203. doi: 10.7498/aps.74.20241352
    [2] 莫凡, 张晓敏, 赵志鹏, 吴琼, 郑朝超, 张林林, 赵立波, 程可, 刘曙东, 唐戈. 浓度依赖的纤维蛋白凝块中的超声传播与冲击波形成数值研究. 物理学报, 2025, 74(15): . doi: 10.7498/aps.74.20250555
    [3] 邹幸, 朱哲, 方文啸. 纳米线电卡效应的表面应力与固溶改性相场模拟. 物理学报, 2024, 73(10): 100501. doi: 10.7498/aps.73.20240105
    [4] 黄晨阳, 李凡, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 空化场中大气泡对空化泡振动的抑制效应分析. 物理学报, 2023, 72(6): 064302. doi: 10.7498/aps.72.20221955
    [5] 张颖, 吴文华, 王建元, 翟薇. 超声场中气泡稳态空化对枝晶生长过程的作用机制. 物理学报, 2022, 71(24): 244303. doi: 10.7498/aps.71.20221101
    [6] 宋人杰, 袁紫燕, 张琪, 于洁, 薛洪惠, 屠娟, 章东. 基于超声RF信号熵分析的声空化时空监测方法. 物理学报, 2022, 71(17): 174301. doi: 10.7498/aps.71.20220558
    [7] 秦对, 邹青钦, 李章勇, 王伟, 万明习, 冯怡. 组织内包膜微泡声空化动力学及其力学效应分析. 物理学报, 2021, 70(15): 154701. doi: 10.7498/aps.70.20210194
    [8] 王鹏, 沈赤兵. 等离子体合成射流对超声速混合层的混合增强. 物理学报, 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [9] 清河美, 那仁满都拉. 空化多泡中大气泡对小气泡空化效应的影响. 物理学报, 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [10] 张孝石, 许昊, 王聪, 陆宏志, 赵静. 水流冲击超声速气体射流实验研究. 物理学报, 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [11] 吴文华, 翟薇, 胡海豹, 魏炳波. 液体材料超声处理过程中声场和流场的分布规律研究. 物理学报, 2017, 66(19): 194303. doi: 10.7498/aps.66.194303
    [12] 王成会, 莫润阳, 胡静. 低频超声空化场中柱状泡群内气泡的声响应. 物理学报, 2016, 65(14): 144301. doi: 10.7498/aps.65.144301
    [13] 郭策, 祝锡晶, 王建青, 叶林征. 超声场下刚性界面附近溃灭空化气泡的速度分析. 物理学报, 2016, 65(4): 044304. doi: 10.7498/aps.65.044304
    [14] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声制备碳纳米管增强AZ91D复合材料的声场模拟. 物理学报, 2015, 64(14): 144302. doi: 10.7498/aps.64.144302
    [15] 卢璐, 吉鸿飞, 郭各朴, 郭霞生, 屠娟, 邱媛媛, 章东. 超声增强藻酸钙凝胶支架材料孔隙率的研究. 物理学报, 2015, 64(2): 024301. doi: 10.7498/aps.64.024301
    [16] 肖尧, 郭红霞, 张凤祁, 赵雯, 王燕萍, 丁李利, 范雪, 罗尹虹, 张科营. 累积剂量影响静态随机存储器单粒子效应敏感性研究. 物理学报, 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [17] 黄建国, 刘丹秋, 高著秀, 李宏伟, 蔡明辉, 韩建伟. 空间微小碎片累积撞击损伤效应加速模拟研究. 物理学报, 2012, 61(2): 029601. doi: 10.7498/aps.61.029601
    [18] 姚天亮, 刘海峰, 许建良, 李伟锋. 空气湍射流速度时间序列的最大Lyapunov指数以及湍流脉动. 物理学报, 2012, 61(23): 234704. doi: 10.7498/aps.61.234704
    [19] 卢义刚, 吴雄慧. 双泡超声空化计算分析. 物理学报, 2011, 60(4): 046202. doi: 10.7498/aps.60.046202
    [20] 袁行球, 李 辉, 赵太泽, 俞国扬, 郭文康, 须 平. 超声速等离子体射流的数值模拟. 物理学报, 2004, 53(8): 2638-2643. doi: 10.7498/aps.53.2638
计量
  • 文章访问数:  355
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-03
  • 修回日期:  2025-05-12
  • 上网日期:  2025-05-16

/

返回文章
返回