搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击载荷下线性硬化材料中球面应力波场的理论计算方法研究

王智环 贾雷明 何增 田宙

引用本文:
Citation:

冲击载荷下线性硬化材料中球面应力波场的理论计算方法研究

王智环, 贾雷明, 何增, 田宙

Method of theoretically calculating spherical stress wave field in linear-hardening materials under impact load

Wang Zhi-Huan, Jia Lei-Ming, He Zeng, Tian Zhou
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于线性硬化塑性本构模型, 建立了冲击载荷作用下弹塑性球面应力波场的理论求解方法. 首先, 分析了冲击载荷卸载速率对球面应力波传播的影响, 得到了3种不同类型的应力波传播图像. 在此基础上, 建立了弹性阶段、塑性加载阶段以及卸载阶段球面波动方程的理论求解方法, 给出了质点位移、质点速度、应力和应变等物理量的计算方案. 与已有理论方法相比, 该方法考虑了不同载荷卸载速率条件下应力波的不同传播情况, 并且给出了卸载阶段应力波参量计算方法, 具有更广的适用范围. 利用上述方法计算了恒定冲击载荷和不同指数衰减冲击载荷作用下弹塑性球面应力波场参量, 在弹性阶段和塑性加载阶段, 理论计算得到的物理量与已有理论方法和数值模拟结果基本吻合, 在卸载阶段, 已有理论方法不再适用, 而本文理论计算得到的物理量与数值模拟结果基本吻合, 验证了该理论方法的正确性.
    Based on the linear hardening plastic constitutive model, the theoretical solution of the elastic-plastic spherical stress wave field under impact load is established. Firstly, the influence of the impact load unloading rate on the propagation of the spherical stress wave is analyzed, and three different types of propagation images are obtained. On this basis, the method of theoretically calculating the spherical wave equation in elastic stage, plastic loading stage and unloading stage is established separately, and the calculation scheme of particle displacement, particle velocity, stress and strain is given. Compared with the existing theoretical methods, this method takes into account the different propagation patterns of the stress waves under different unloading rates, and shows how to calculate the stress wave parameters in unloading stage, which is more applicable. This method is used to calculate the elastic-plastic spherical stress wave field under constant shock load and exponential attenuation shock load. The calculated results are in good agreement with those from the existing theoretical method and numerical simulation results in the elastic stage and also in the plastic loading stage. In the unloading stage, the existing theoretical method is no longer applicable, while the results obtained in this paper are in good agreement with the numerical simulation results, which verifies the correctness of the theoretical method.
      通信作者: 王智环, wangzhihuan@nint.ac.cn
      Corresponding author: Wang Zhi-Huan, wangzhihuan@nint.ac.cn
    [1]

    Wlodarczyk E, Zielenkiewicz M 2009 J. Theor. App. Mech. 47 127

    [2]

    Wlodarczyk E, Zielenkiewicz M 2009 J. Theor. App. Mech. 47 761

    [3]

    Wlodarczyk E, Zielenkiewicz M 2009 Shock Waves 18 465Google Scholar

    [4]

    Wlodarczyk E, Zielenkiewicz M 2011 J. Theor. App. Mech. 49 457

    [5]

    Biswas S 2021 Indian J. Phys. 95 705Google Scholar

    [6]

    李孝兰 2000 爆炸与冲击 20 186Google Scholar

    Li X L 2000 Explo. Shock Waves 20 186Google Scholar

    [7]

    李孝兰 2000 爆炸与冲击 20 283Google Scholar

    Li X L 2000 Explo. Shock Waves 20 283Google Scholar

    [8]

    肖建华 2001 石油地球物理勘探 36 160Google Scholar

    Xiao J H 2001 Oil Geophys. Prospect. 36 160Google Scholar

    [9]

    肖建华 2004 石油地球物理勘探 39 249Google Scholar

    Xiao J H 2004 Oil Geophys. Prospect. 39 249Google Scholar

    [10]

    Xu C J, Chen Q Z, Zhou J, Cai Y Q 2015 J. Civ. Eng. 19 2035Google Scholar

    [11]

    卢强, 王占江, 王礼立, 赖华伟, 杨黎明 2013 爆炸与冲击 33 463Google Scholar

    Lu Q, Wang Z J, Wang L L, Lai H W, Yang L M 2013 Explo. Shock Waves 33 463Google Scholar

    [12]

    卢强, 王占江 2015 物理学报 64 108301Google Scholar

    Lu Q, Wang Z J 2015 Acta Phys. Sin. 64 108301Google Scholar

    [13]

    Lu Q, Wang Z J 2016 J. Sound Vib. 371 183Google Scholar

    [14]

    邓德全, 李兆权 1992 第三届全国岩石动力学学术会议论文集, 桂林, 1992, 第152页

    Deng D Q, Li Z Q 1992 Proceedings of the 3rd National Conference on Rock Dynamics Guilin, 1992 p152 (in Chinese)

    [15]

    赖华伟, 王占江, 杨黎明, 王礼立 2013 爆炸与冲击 33 1Google Scholar

    Lai H W, Wang Z J, Yang L M, Wang L L 2013 Explo. Shock Waves 33 1Google Scholar

    [16]

    Yang C Y 1970 Int. J. Solids Struct. 6 757Google Scholar

    [17]

    Morland L W 1971 J. Mech. Phys. Solids 19 295Google Scholar

    [18]

    Milne P C, Morland L W, Yeung W 1988 J. Mech. Phys. Solids 36 15Google Scholar

    [19]

    Milne P C, Morland L W 1988 J. Mech. Phys. Solids 36 215Google Scholar

    [20]

    Rapoport L, Katzir Z, Rubin M B 2011 Wave Motion 48 441Google Scholar

    [21]

    Santos T, Brezolin A, Rossi R, Rodriguez-Martinez J A 2020 Acta Mech. 231 2381Google Scholar

    [22]

    肖建华, 孙文涛 1997 石油地球物理勘探 32 809

    Xiao J H, Sun W T 1997 Oil Geophys. Prospect. 32 809

    [23]

    Chen S, Wu J, Zhang Z 2017 J. Eng. Mech. 143 04017034Google Scholar

    [24]

    王礼立 2005 应力波基础 (第二版) (北京: 国防工业出版社) 第236页

    Wang L L 2005 Foundation of Stress Waves (2nd Ed.) (Beijing: National Defense Industry Press) p236 (in Chinese)

  • 图 1  畸变律曲线

    Fig. 1.  Curve of the distortion law.

    图 2  应力波传播示意图 (a) 载荷卸载较快; (b) 载荷卸载较慢; (c) 载荷卸载速率介于上述二者之间

    Fig. 2.  Schematic diagrams of the stress wave propagation (a) Rapid unloading; (b) slow unloading; (c) middle unloading.

    图 3  网格无关性 (a) 空腔壁面位移时间历程; (b) 径向应力空间分布

    Fig. 3.  Gird independence: (a) Time history of the cavity surface displacement; (b) radial stress distribution.

    图 4  径向应力时间历程 (a) r = 0.5 m; (b) r = 0.8 m; (c) r = 1.4 m和径向应力空间分布 (d) t = 0.1 ms; (e) t = 0.2 ms; (f) t = 0.3 ms (恒定冲击载荷)

    Fig. 4.  Time history of the radial stress: (a) r = 0.5 m; (b) r = 0.8 m; (c) r = 1.4 m and the radial stress distribution: (d) t = 0.1 ms; (e) t = 0.2 ms; (f) t = 0.3 ms (constant impact loading).

    图 5  径向应力时间历程 (a) r = 0.3 m; (b) r = 0.5 m; (c) r = 0.6 m和径向应力空间分布 (d) t = 0.05 ms; (e) t = 0.2 ms; (f) t = 0.6 ms (T0 = 0.01 ms)

    Fig. 5.  Time history of the radial stress: (a) r = 0.3 m; (b) r = 0.5 m; (c) r = 0.6 m and the radial stress distribution: (d) t = 0.05 ms; (e) t = 0.2 ms; (f) t = 0.6 ms (T0 = 0.01 ms).

    图 7  径向应力时间历程 (a) r = 0.4 m; (b) r = 0.6 m; (c) r = 0.7 m和径向应力空间分布 (d) t = 0.1 ms; (e) t = 0.2 ms; (f) t = 0.6 ms (T0 = 0.03 ms)

    Fig. 7.  Time history of the radial stress: (a) r = 0.4 m; (b) r = 0.6 m; (c) r = 0.7 m; and the radial stress distribution: (d) t = 0.1 ms; (e) t = 0.2 ms; (f) t = 0.6 ms (T0 = 0.03 ms).

    图 6  径向应力时间历程 (a) r = 0.5 m; (b) r = 0.75 m; (c) r = 1.25 m和径向应力空间分布 (d) t = 0.1 ms; (e) t = 0.2 ms; (f) t = 0.6 ms (T0 = 0.2 ms)

    Fig. 6.  Time history of the radial stress: (a) r = 0.5 m; (b) r = 0.75 m; (c) r = 1.25 m and the radial stress distribution: (d) t = 0.1 ms; (e) t = 0.2 ms; (f) t = 0.6 ms (T0 = 0.2 ms).

    表 1  图4图7中各曲线相对偏差

    Table 1.  Relative errors of the curves in Figs. 4-7

    图4图7e/%
    (a)(b)(c)(d)(e)(f)
    图4 恒定冲击载荷6.16.76.93.36.211.2
    图5 T0 = 0.01 ms4.28.28.86.98.36.4
    图6 T0 = 0.2 ms6.511.220.42.73.113.4
    图7 T0 = 0.03 ms6.63.44.43.812.67.1
    下载: 导出CSV
  • [1]

    Wlodarczyk E, Zielenkiewicz M 2009 J. Theor. App. Mech. 47 127

    [2]

    Wlodarczyk E, Zielenkiewicz M 2009 J. Theor. App. Mech. 47 761

    [3]

    Wlodarczyk E, Zielenkiewicz M 2009 Shock Waves 18 465Google Scholar

    [4]

    Wlodarczyk E, Zielenkiewicz M 2011 J. Theor. App. Mech. 49 457

    [5]

    Biswas S 2021 Indian J. Phys. 95 705Google Scholar

    [6]

    李孝兰 2000 爆炸与冲击 20 186Google Scholar

    Li X L 2000 Explo. Shock Waves 20 186Google Scholar

    [7]

    李孝兰 2000 爆炸与冲击 20 283Google Scholar

    Li X L 2000 Explo. Shock Waves 20 283Google Scholar

    [8]

    肖建华 2001 石油地球物理勘探 36 160Google Scholar

    Xiao J H 2001 Oil Geophys. Prospect. 36 160Google Scholar

    [9]

    肖建华 2004 石油地球物理勘探 39 249Google Scholar

    Xiao J H 2004 Oil Geophys. Prospect. 39 249Google Scholar

    [10]

    Xu C J, Chen Q Z, Zhou J, Cai Y Q 2015 J. Civ. Eng. 19 2035Google Scholar

    [11]

    卢强, 王占江, 王礼立, 赖华伟, 杨黎明 2013 爆炸与冲击 33 463Google Scholar

    Lu Q, Wang Z J, Wang L L, Lai H W, Yang L M 2013 Explo. Shock Waves 33 463Google Scholar

    [12]

    卢强, 王占江 2015 物理学报 64 108301Google Scholar

    Lu Q, Wang Z J 2015 Acta Phys. Sin. 64 108301Google Scholar

    [13]

    Lu Q, Wang Z J 2016 J. Sound Vib. 371 183Google Scholar

    [14]

    邓德全, 李兆权 1992 第三届全国岩石动力学学术会议论文集, 桂林, 1992, 第152页

    Deng D Q, Li Z Q 1992 Proceedings of the 3rd National Conference on Rock Dynamics Guilin, 1992 p152 (in Chinese)

    [15]

    赖华伟, 王占江, 杨黎明, 王礼立 2013 爆炸与冲击 33 1Google Scholar

    Lai H W, Wang Z J, Yang L M, Wang L L 2013 Explo. Shock Waves 33 1Google Scholar

    [16]

    Yang C Y 1970 Int. J. Solids Struct. 6 757Google Scholar

    [17]

    Morland L W 1971 J. Mech. Phys. Solids 19 295Google Scholar

    [18]

    Milne P C, Morland L W, Yeung W 1988 J. Mech. Phys. Solids 36 15Google Scholar

    [19]

    Milne P C, Morland L W 1988 J. Mech. Phys. Solids 36 215Google Scholar

    [20]

    Rapoport L, Katzir Z, Rubin M B 2011 Wave Motion 48 441Google Scholar

    [21]

    Santos T, Brezolin A, Rossi R, Rodriguez-Martinez J A 2020 Acta Mech. 231 2381Google Scholar

    [22]

    肖建华, 孙文涛 1997 石油地球物理勘探 32 809

    Xiao J H, Sun W T 1997 Oil Geophys. Prospect. 32 809

    [23]

    Chen S, Wu J, Zhang Z 2017 J. Eng. Mech. 143 04017034Google Scholar

    [24]

    王礼立 2005 应力波基础 (第二版) (北京: 国防工业出版社) 第236页

    Wang L L 2005 Foundation of Stress Waves (2nd Ed.) (Beijing: National Defense Industry Press) p236 (in Chinese)

  • [1] 雷雨, 赵丹宁, 乔海花. 地球自转速率变化的非线性特性. 物理学报, 2024, 73(19): 199101. doi: 10.7498/aps.73.20240815
    [2] 黄坤, 王腾飞, 姚激. 单层MoS2的热弹耦合非线性板模型. 物理学报, 2021, 70(13): 136201. doi: 10.7498/aps.70.20210160
    [3] 王汝佳, 吴士平, 陈伟. 热粘弹波在变温非均匀合金熔体中的传播. 物理学报, 2019, 68(4): 048101. doi: 10.7498/aps.68.20181923
    [4] 宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会. 集流体塑性变形对锂离子电池双层电极中锂扩散和应力的影响. 物理学报, 2018, 67(14): 140201. doi: 10.7498/aps.67.20180148
    [5] 殷建伟, 潘昊, 吴子辉, 郝鹏程, 胡晓棉. 爆轰加载下弹塑性固体Richtmyer-Meshkov流动的扰动增长规律. 物理学报, 2017, 66(7): 074701. doi: 10.7498/aps.66.074701
    [6] 王宏明, 朱弋, 李桂荣, 郑瑞. 强磁与应力场耦合作用下AZ31镁合金塑性变形行为. 物理学报, 2016, 65(14): 146101. doi: 10.7498/aps.65.146101
    [7] 卢强, 王占江. 标准线性固体材料中球面应力波传播特征研究. 物理学报, 2015, 64(10): 108301. doi: 10.7498/aps.64.108301
    [8] 李菁田, 王建录, 张邦强, 荣曦明, 宁西京. 一种预测材料蠕变速率的新模型. 物理学报, 2014, 63(2): 028101. doi: 10.7498/aps.63.028101
    [9] 张建文, 任永华, 吴润衡, 冯涛. 非线性热弹耦合Sine-Gordon型系统的整体吸引子. 物理学报, 2012, 61(11): 110404. doi: 10.7498/aps.61.110404
    [10] 李雪梅, 俞宇颖, 张林, 李英华, 叶素华, 翁继东. 100 LiF的低压冲击响应和1550 nm波长下的窗口速度修正. 物理学报, 2012, 61(15): 156202. doi: 10.7498/aps.61.156202
    [11] 张建文, 李金峰, 吴润衡. 强阻尼非线性热弹耦合杆系统的全局吸引子. 物理学报, 2011, 60(7): 070205. doi: 10.7498/aps.60.070205
    [12] 张凤国, 周洪强, 张广财, 洪滔. 惯性及弹塑性效应对延性金属材料层裂损伤的影响. 物理学报, 2011, 60(7): 074601. doi: 10.7498/aps.60.074601
    [13] 岑忞, 章岳光, 陈卫兰, 顾培夫. 沉积速率和氧分压对HfO2薄膜残余应力的影响. 物理学报, 2009, 58(10): 7025-7029. doi: 10.7498/aps.58.7025
    [14] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟. 物理学报, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [15] 何安民, 邵建立, 秦承森, 王裴. 单晶Cu冲击加载及卸载下塑性行为的微观模拟. 物理学报, 2009, 58(8): 5667-5672. doi: 10.7498/aps.58.5667
    [16] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用. 物理学报, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [17] 张良英, 曹 力, 金国祥. 调幅波的单模激光线性模型随机共振. 物理学报, 2006, 55(12): 6238-6242. doi: 10.7498/aps.55.6238
    [18] 卞保民, 杨 玲, 张 平, 纪运景, 李振华, 倪晓武. 理想气体球面强冲击波一般自模拟运动模型. 物理学报, 2006, 55(8): 4181-4187. doi: 10.7498/aps.55.4181
    [19] 丁宏玉, 吴百诗, 殷大钧, 李锦泉. 简并四波混频的速率方程理论. 物理学报, 1988, 37(3): 408-415. doi: 10.7498/aps.37.408
    [20] 李富斌. 四维Minkowski空间中具有立方非线性复标量场方程的平面与球面波解. 物理学报, 1988, 37(9): 1461-1470. doi: 10.7498/aps.37.1461
计量
  • 文章访问数:  6481
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-20
  • 修回日期:  2021-09-05
  • 上网日期:  2021-09-16
  • 刊出日期:  2022-01-05

/

返回文章
返回