搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热粘弹波在变温非均匀合金熔体中的传播

王汝佳 吴士平 陈伟

引用本文:
Citation:

热粘弹波在变温非均匀合金熔体中的传播

王汝佳, 吴士平, 陈伟

Propagation of thermoviscoelastic wave in inhomogeneous alloy melt with varying temperature

Wang Ru-Jia, Wu Shi-Ping, Chen Wei
PDF
HTML
导出引用
  • 机械波在金属凝固过程中传播的定量计算一直是一个难题, 主要原因就是在这个过程中的熔体结构非常复杂. 本研究考虑到熔体的变温、非均匀和粘弹性的特点, 采用Kelvin粘弹性介质模型, 建立了具有粘热损失特性的热粘弹性波动方程, 通过隐式有限差分方法对波动方程进行求解, 并以ZL203A合金熔体为研究对象, 探究了热粘弹波在变温非均匀介质中的传播规律. 结果表明: 热粘弹波从合金熔体的低温区向高温区传播时, 非均匀的温度场对波的传播有较大影响; 相反, 当波从合金熔体的高温区向低温区传播时, 非均匀的温度场对波的传播几乎没有影响. 热粘弹波在合金熔体中的衰减系数随频率的增大呈线性增大, 而随温度的升高先增大后减小, 在熔体的枝晶搭接温度附近达到最大值.
    The quantitative calculation of mechanical wave propagation in the solidification of metal is difficult because of the complicated structure of melt in the solidification process. In this study, the Kelvin model is used to describe the viscoelastic characteristics of alloy melt, and the thermoviscoelastic wave equations are established in conjunction with continuity equation, momentum equation, energy equation considering thermo-mechanical effect and constitutive equation considering thermal stress. The difference equation of thermoviscoelastic wave in the variable non-uniform temperature field is built by using the implicit finite difference method of second order in space and first order in time, and taking into account the variable temperature and non-uniformity of melt. The difference equation is solved numerically by taking the thermodynamic parameters of ZL203A alloy in solid-liquid region varying with temperature as calculation parameters, and the propagation law of thermoviscoelastic wave in the inhomogeneous alloy melt with varying temperature is obtained. By comparing the propagation law of the wave with same wavelength in elastic medium with that in viscoelastic medium, it is found that the thermoviscoelastic wave attenuates seriously, and the thermoelastic wave has no attenuation. The step of displacement of thermoviscoelastic wave will be smoothed rapidly during propagation. The comparison among propagations of thermoviscoelastic wave in homogeneous medium at different temperatures shows that the wavelength of thermoviscoelastic wave in high temperature melt is smaller and the attenuation is more serious than in low temperature melt. The propagation of thermoviscoelastic wave in inhomogeneous medium is equivalent to the propagation in layered medium with different impedance, which makes the attenuation more serious than in homogeneous medium. When the thermoviscoelastic wave propagates from the low temperature region to the high one, the distribution of inhomogeneous temperature field has a great influence on the propagation of wave. The smaller the slope of the temperature field at the incidence of the wave, the smaller the attenuation of the wave is, and the farther the propagation distance is, conversely, when the wave propagates from the high temperature region to the low one, the distribution of the inhomogeneous temperature field has little influence on the propagation of wave. The calculation results of attenuation coefficients of thermoviscoelastic wave with different frequencies at different temperatures show that the attenuation coefficients of thermoviscoelastic waves in alloy melt are bigger in the high temperature medium than in the low temperature medium, and it increases linearly with the frequency increasing. The attenuation coefficient first increases and then decreases with temperature increasing, and reaches a maximum value at the coherency temperature.
      通信作者: 吴士平, spwu@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51475120)和国家自然科学基金重点项目(批准号: U1537201)资助的课题.
      Corresponding author: Wu Shi-Ping, spwu@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51475120) and the Key Program of the National Natural Science Foundation of China (Grant No. U1537201).
    [1]

    Guo F, Luo P, Qiu B, Li K 2008 Met. Mat. Metall. Eng. 1 015

    [2]

    Kotadia H R, Qian M, Eskin D G, Das A 2017 Mater. Design 6 65

    [3]

    Chen R R, Zheng D S, Guo J J, Fu H Z 2016 Mater. Sci. Eng. A 653 23Google Scholar

    [4]

    Eskin G I, Eskin D G 2014 Ultrasonic Treatment of Light Alloy Melts (Boca Raton: CRC Press)

    [5]

    Wang R J, Wu S P, Chen W 2018 T. Nonferr. Metal. Soc. 28 1514Google Scholar

    [6]

    Zhang M, Li X, Li Z H, Xu X 2011 Special Casting and Nonferrous Alloys 2 034

    [7]

    Wu S P, Wang R J, Chen W 2017 Acta Metall. Sin. 54 247

    [8]

    Wang R J, Wu S P, Chen W 2019 Simulation 95 3Google Scholar

    [9]

    Kong W, Cang D 2012 Simulation 88 694Google Scholar

    [10]

    Jiang R P, Li X Q, Ju Z Y, Zhang M 2014 J. South China Univ. Techno.: Nat. Sci. Ed. 4 014

    [11]

    Shao Z W, Le Q, Zhang Z Q, Cui J Z 2011 T. Nonferr. Metal. Soc. 21 2476Google Scholar

    [12]

    Mccarthy M F, Moodie T B, Sawatzky R P 1988 Q. Appl. Math. 46 539Google Scholar

    [13]

    Nowinski J L, Boley B 1980 J. Appl .Mech 47

    [14]

    Bruno B A, Jerome H W 2012 Theory of Thermal Stresses [https://www.ebookmall.com/ebook/theory-of-thermal-stresses/bruno-a-boley/9780486695792]

    [15]

    范绪箕, 陈国光 1982 力学进展 12 339

    Fan X J, Chen G G 1982 Adv. Mech. 12 339

    [16]

    Takeuti Y, Tanigawa Y 1979 Int. J. Numer. Meth. Eng. 14 987Google Scholar

    [17]

    刘驰, 李庆春 1988 铸造 9 28

    Liu C, Li Q C 1988 Foundry 9 28

    [18]

    Fraizier E , Nadal M H , Oltra R 2002 Ultrasonics 40 543Google Scholar

    [19]

    Jarzynski J 1963 Proc. Phys. Soc. 81 745Google Scholar

    [20]

    Bansal R 2002 J. Phys. C: Solid State Phys. 6 1204

    [21]

    牛滨华, 孙春岩 2007 半无限空间各向同性黏弹性介质与地震波传播(北京: 地质出版社) 第107页

    Niu B H, Sun C Y 2007 Half-space homogeneous isotropic viscoelastic medium and seismic wave propagation (Beijing: Geological Publishing House) p107 (in Chinese)

    [22]

    Li J W, Momono T, Ying F U, Jia Z, Yu Y T 2007 T. Nonferr. Metal. Soc. 17 691Google Scholar

    [23]

    Lavender J D 1972 Non-Destructive Testing 52 107

    [24]

    Magnin B, Maenner L, Katgerman Laurens, Engler S 1996 Mater. Sci. Forum 217 1209

    [25]

    Sivkov G, Yagodin D, Kofanov S, Gornov O, Volodin S, Bykov V, Dahlborg U 2007 J. Non-Cryst. Solids 353 3274Google Scholar

  • 图 1  数值模拟中采用的计算参数

    Fig. 1.  Parameters used in numerical simulation.

    图 2  热粘弹波在弹性介质和Kelvin介质中的位移和温差的分布

    Fig. 2.  Distribution of displacement and temperature difference of thermoviscoelastic wave in elastic medium and Kelvin medium.

    图 3  热粘弹波在变温均匀介质中的位移和温差的分布

    Fig. 3.  Distribution of displacement and temperature difference of thermoviscoelastic wave in homogeneous medium with variable temperature.

    图 4  热粘弹波在非均匀介质中的传播 (a)位移随时间和空间的变化;(b)温差随时间和空间的变化

    Fig. 4.  Propagation of thermoviscoelastic waves in inhomogeneous medium: (a) Displacement changes with time and space; (b) temperature difference changes with time and space.

    图 5  热粘弹波在不同的均匀温度场中的位移分布

    Fig. 5.  Distribution of displacement of thermoviscoelastic wave in different uniform temperature field.

    图 6  热粘弹波在不同的非均匀温度场中的位移和温差的分布 (a)波从低温区域向高温区域传播;(b)波从高温区域向低温区域传播

    Fig. 6.  Distribution of displacement and temperature difference of thermoviscoelastic wave in different inhomogeneous temperature field: (a) Propagation from low temperature region to high temperature region; (b) propagation from high temperature region to low temperature region.

    图 7  不同温度场下热粘弹波的衰减系数与频率的关系

    Fig. 7.  Relationship between attenuation coefficient and frequency of thermoviscoelastic wave in different temperature fields.

    图 8  不同频率下热粘弹波的衰减系数与温度的关系

    Fig. 8.  Relationship between attenuation coefficient of thermoviscoelastic wave and temperature in different frequency.

  • [1]

    Guo F, Luo P, Qiu B, Li K 2008 Met. Mat. Metall. Eng. 1 015

    [2]

    Kotadia H R, Qian M, Eskin D G, Das A 2017 Mater. Design 6 65

    [3]

    Chen R R, Zheng D S, Guo J J, Fu H Z 2016 Mater. Sci. Eng. A 653 23Google Scholar

    [4]

    Eskin G I, Eskin D G 2014 Ultrasonic Treatment of Light Alloy Melts (Boca Raton: CRC Press)

    [5]

    Wang R J, Wu S P, Chen W 2018 T. Nonferr. Metal. Soc. 28 1514Google Scholar

    [6]

    Zhang M, Li X, Li Z H, Xu X 2011 Special Casting and Nonferrous Alloys 2 034

    [7]

    Wu S P, Wang R J, Chen W 2017 Acta Metall. Sin. 54 247

    [8]

    Wang R J, Wu S P, Chen W 2019 Simulation 95 3Google Scholar

    [9]

    Kong W, Cang D 2012 Simulation 88 694Google Scholar

    [10]

    Jiang R P, Li X Q, Ju Z Y, Zhang M 2014 J. South China Univ. Techno.: Nat. Sci. Ed. 4 014

    [11]

    Shao Z W, Le Q, Zhang Z Q, Cui J Z 2011 T. Nonferr. Metal. Soc. 21 2476Google Scholar

    [12]

    Mccarthy M F, Moodie T B, Sawatzky R P 1988 Q. Appl. Math. 46 539Google Scholar

    [13]

    Nowinski J L, Boley B 1980 J. Appl .Mech 47

    [14]

    Bruno B A, Jerome H W 2012 Theory of Thermal Stresses [https://www.ebookmall.com/ebook/theory-of-thermal-stresses/bruno-a-boley/9780486695792]

    [15]

    范绪箕, 陈国光 1982 力学进展 12 339

    Fan X J, Chen G G 1982 Adv. Mech. 12 339

    [16]

    Takeuti Y, Tanigawa Y 1979 Int. J. Numer. Meth. Eng. 14 987Google Scholar

    [17]

    刘驰, 李庆春 1988 铸造 9 28

    Liu C, Li Q C 1988 Foundry 9 28

    [18]

    Fraizier E , Nadal M H , Oltra R 2002 Ultrasonics 40 543Google Scholar

    [19]

    Jarzynski J 1963 Proc. Phys. Soc. 81 745Google Scholar

    [20]

    Bansal R 2002 J. Phys. C: Solid State Phys. 6 1204

    [21]

    牛滨华, 孙春岩 2007 半无限空间各向同性黏弹性介质与地震波传播(北京: 地质出版社) 第107页

    Niu B H, Sun C Y 2007 Half-space homogeneous isotropic viscoelastic medium and seismic wave propagation (Beijing: Geological Publishing House) p107 (in Chinese)

    [22]

    Li J W, Momono T, Ying F U, Jia Z, Yu Y T 2007 T. Nonferr. Metal. Soc. 17 691Google Scholar

    [23]

    Lavender J D 1972 Non-Destructive Testing 52 107

    [24]

    Magnin B, Maenner L, Katgerman Laurens, Engler S 1996 Mater. Sci. Forum 217 1209

    [25]

    Sivkov G, Yagodin D, Kofanov S, Gornov O, Volodin S, Bykov V, Dahlborg U 2007 J. Non-Cryst. Solids 353 3274Google Scholar

  • [1] 宋利伟, 石颖, 陈树民, 柯璇, 侯晓慧, 刘志奇. 地下黏弹性介质波动方程及波场数值模拟. 物理学报, 2021, 70(14): 149102. doi: 10.7498/aps.70.20210005
    [2] 姜春华, 赵正予. 化学复合率对激发赤道等离子体泡影响的数值模拟. 物理学报, 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [3] 吴宇昊, 王伟丽, 魏炳波. 液态三元Fe-Sn-Si/Ge偏晶合金相分离过程的实验和模拟研究. 物理学报, 2016, 65(10): 106402. doi: 10.7498/aps.65.106402
    [4] 危卫, 张力元, 顾兆林. 工业中粉体颗粒的荷电机理及数值模拟方法. 物理学报, 2015, 64(16): 168301. doi: 10.7498/aps.64.168301
    [5] 徐肖肖, 吴杨杨, 刘朝, 王开正, 叶建. 水平螺旋管内超临界CO2冷却换热的数值模拟. 物理学报, 2015, 64(5): 054401. doi: 10.7498/aps.64.054401
    [6] 王哲, 王发展, 王欣, 何银花, 马姗, 吴振. Fe-Pb合金凝固多相体系内偏析形成过程的三维数值模拟. 物理学报, 2014, 63(7): 076101. doi: 10.7498/aps.63.076101
    [7] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究. 物理学报, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [8] 王平, 尹玉真, 沈胜强. 三维有序排列多孔介质对流换热的数值研究. 物理学报, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [9] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟. 物理学报, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [10] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究. 物理学报, 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [11] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究. 物理学报, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [12] 弭光宝, 李培杰, Охапкин А В, Константинова Н Ю, Сабирзянов А А, Попель П С. 液态结构与性质关系Ⅱ——Mg-9Al熔体的运动黏度及与熔体微观结构的关系. 物理学报, 2011, 60(5): 056601. doi: 10.7498/aps.60.056601
    [13] 何兴道, 夏健, 史久林, 刘娟, 李淑静, 刘建安, 方伟. 水的衰减系数及有效增益长度对受激布里渊散射输出能量的影响. 物理学报, 2011, 60(5): 054207. doi: 10.7498/aps.60.054207
    [14] 花金荣, 祖小涛, 李莉, 向霞, 陈猛, 蒋晓东, 袁晓东, 郑万国. 熔石英亚表面三维Hertz锥形划痕附近光强分布的数值模拟. 物理学报, 2010, 59(4): 2519-2524. doi: 10.7498/aps.59.2519
    [15] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [16] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟. 物理学报, 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [17] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [18] 王艳辉, 王德真. 介质阻挡均匀大气压辉光放电数值模拟研究. 物理学报, 2003, 52(7): 1694-1700. doi: 10.7498/aps.52.1694
    [19] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究. 物理学报, 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  7069
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-29
  • 修回日期:  2018-12-01
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-20

/

返回文章
返回