搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

标准线性固体材料中球面应力波传播特征研究

卢强 王占江

引用本文:
Citation:

标准线性固体材料中球面应力波传播特征研究

卢强, 王占江

Characteristics of spherical stress wave propagation in the standard linear solid material

Lu Qiang, Wang Zhan-Jiang
PDF
导出引用
  • 基于标准线性固体模型, 结合球面波波动方程, 给出了球面应力波的粒子速度v、粒子位移u、径向应力σr、切向应力σθ、径向应变εr、切向应变εθ、折合速度势、折合位移势在Laplace域的理论解. 采用基于Crump算法的Laplace数值逆变换方法分析了上述物理量的传播特征. Laplace数值反演结果表明, 线黏弹性材料对强间断球面应力波的初始响应为纯弹性响应, 强间断在传播过程中包含了几何衰减和本构黏性衰减, 应力、应变、粒子速度的衰减特性和粒子位移、应力、应变、折合位移势等物理量的稳态值同黏弹性球面波的理论预测一致. 折合速度势和折合位移势的峰值随波传播距离的增加逐渐衰减, 这与理想弹性理论给出的折合速度势和折合位移势不随传播距离变化的结论不同. 折合位移势的稳态值与介质的静态剪切模量成反比, 与稳态空腔压力成正比, 与空腔半径的三次方成正比.
    Based on the standard linear solid model, the solutions in Laplace domain, such as particle velocity v, particle displacement u, radial stress σr, tangential stress σθ, radial strain εr, tangential strain εθ, reduced velocity potential γ (RVP), and reduced displacement potential ψ (RDP), are derived from the spherical wave equations. The propagating characteristics of these physical quantities, as mentioned above, are calculated by using Crump algorithm for inverse Laplace transformation. The numerical inversion results reveal that the initial response to strong discontinuity spherical stress wave in viscoelastic material is purely elastic response. The strong discontinuities, such as σr, σθ, εr, εθ and v, contain geometrical attenuation and viscoelastic damping in the process of wave propagation. The variables, such as σr, σθ, εr, εθ,u and ψ, converge to steady values as time approaches to infinity. The peak values of RVP γ and RDP ψ, which are constant in a purely elastic material, are steadily reduced with the spreading distance increasing in viscoelastic material. The steady values of ψ are in inverse relation to the static shear modulus Ga, and directly proportional to the steady cavity pressure and the cube of the cavity radius r.
    • 基金项目: 国家自然科学基金(批准号: 11172244)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11172244).
    [1]

    Garg S K 1968 J. Appl. Math. Phys. 19 243

    [2]

    Garg S K 1968 J. Appl. Math. Phys. 19 778

    [3]

    Li X L 2000 Explosion and Shock Waves 20 186 (in Chinese) [李孝兰 2000 爆炸与冲击 20 186]

    [4]

    Li X L 2000 Explosion and Shock Waves 20 283 (in Chinese) [李孝兰 2000 爆炸与冲击 20 283]

    [5]

    Perzyna P 1963 J. Appl. Math. Phys. 14 241

    [6]

    Zabinski M P, Phillips A 1974 Acta Mech. 20 153

    [7]

    Phillips A, Zabinski M P 1972 Ingenieur. Archiv. 41 367

    [8]

    Koshelev E A 1988 Soviet Mining 24 541

    [9]

    Banerjee S, Roychoudhuri S K 1995 Comput. Math. Appl. 30 91

    [10]

    Wang L L, Lai H W, Wang Z J, Yang L M 2013 Int. J. Impact Eng. 55 1

    [11]

    Lu Q, Wang Z J, Wang L L, Lai H W, Yang L M 2013 Explosion and Shock Waves 33 463 (in Chinese) [卢强, 王占江, 王礼立, 赖华伟, 杨黎明 2013 爆炸与冲击 33 463]

    [12]

    Lu Q, Wang Z J, Li J, Guo Z Y, Men C J 2012 Rock Soil Mech. 33 3292 (in Chinese) [卢强, 王占江, 李进, 郭志昀, 门朝举 2012 岩土力学 33 3292]

    [13]

    Lai H W, Wang Z J, Yang L M, Wang L L 2013 Explosion and Shock Waves 33 1 (in Chinese) [赖华伟, 王占江, 杨黎明, 王礼立 2013 爆炸与冲击 33 1]

    [14]

    Lai H W, Wang Z J, Yang L M, Wang L L 2013 Chin. J. High Pressure Phys. 27 245 (in Chinese) [赖华伟, 王占江, 杨黎明, 王礼立 2013 高压物理学报 27 245]

    [15]

    Du Q Z 2004 Acta Phys. Sin. 53 4428 (in Chinese) [杜启振 2004 物理学报 53 4428]

    [16]

    Du Q Z, Yang H Z 2004 Acta Phys. Sin. 53 2801 (in Chinese) [杜启振, 杨慧珠 2004 物理学报 53 2801]

    [17]

    Feng Y L, Liu X Z, Liu J H, Ma L 2009 Chin. Phys. B 18 3909

    [18]

    Yao G J, L W G, Song R L, Cui Z W, Zhang X L, Wang K X 2010 Chin. Phys. B 19 074301

    [19]

    Lepage W R 1961 Complex Variables and the Laplace Transform for Engineers (America: Dover Publications Inc) pp372-378

    [20]

    Crump K S 1976 J. Associat. Comput. Machin. 23 89

  • [1]

    Garg S K 1968 J. Appl. Math. Phys. 19 243

    [2]

    Garg S K 1968 J. Appl. Math. Phys. 19 778

    [3]

    Li X L 2000 Explosion and Shock Waves 20 186 (in Chinese) [李孝兰 2000 爆炸与冲击 20 186]

    [4]

    Li X L 2000 Explosion and Shock Waves 20 283 (in Chinese) [李孝兰 2000 爆炸与冲击 20 283]

    [5]

    Perzyna P 1963 J. Appl. Math. Phys. 14 241

    [6]

    Zabinski M P, Phillips A 1974 Acta Mech. 20 153

    [7]

    Phillips A, Zabinski M P 1972 Ingenieur. Archiv. 41 367

    [8]

    Koshelev E A 1988 Soviet Mining 24 541

    [9]

    Banerjee S, Roychoudhuri S K 1995 Comput. Math. Appl. 30 91

    [10]

    Wang L L, Lai H W, Wang Z J, Yang L M 2013 Int. J. Impact Eng. 55 1

    [11]

    Lu Q, Wang Z J, Wang L L, Lai H W, Yang L M 2013 Explosion and Shock Waves 33 463 (in Chinese) [卢强, 王占江, 王礼立, 赖华伟, 杨黎明 2013 爆炸与冲击 33 463]

    [12]

    Lu Q, Wang Z J, Li J, Guo Z Y, Men C J 2012 Rock Soil Mech. 33 3292 (in Chinese) [卢强, 王占江, 李进, 郭志昀, 门朝举 2012 岩土力学 33 3292]

    [13]

    Lai H W, Wang Z J, Yang L M, Wang L L 2013 Explosion and Shock Waves 33 1 (in Chinese) [赖华伟, 王占江, 杨黎明, 王礼立 2013 爆炸与冲击 33 1]

    [14]

    Lai H W, Wang Z J, Yang L M, Wang L L 2013 Chin. J. High Pressure Phys. 27 245 (in Chinese) [赖华伟, 王占江, 杨黎明, 王礼立 2013 高压物理学报 27 245]

    [15]

    Du Q Z 2004 Acta Phys. Sin. 53 4428 (in Chinese) [杜启振 2004 物理学报 53 4428]

    [16]

    Du Q Z, Yang H Z 2004 Acta Phys. Sin. 53 2801 (in Chinese) [杜启振, 杨慧珠 2004 物理学报 53 2801]

    [17]

    Feng Y L, Liu X Z, Liu J H, Ma L 2009 Chin. Phys. B 18 3909

    [18]

    Yao G J, L W G, Song R L, Cui Z W, Zhang X L, Wang K X 2010 Chin. Phys. B 19 074301

    [19]

    Lepage W R 1961 Complex Variables and the Laplace Transform for Engineers (America: Dover Publications Inc) pp372-378

    [20]

    Crump K S 1976 J. Associat. Comput. Machin. 23 89

  • [1] 段韵达, 胡恒山. 轴对称指向性球面波的界面反射波. 物理学报, 2022, 71(7): 074301. doi: 10.7498/aps.71.20211718
    [2] 邓娈, 杜报, 蔡洪波, 康洞国, 朱少平. 在质子照相中利用Abel逆变换反演等离子体自生磁场结构. 物理学报, 2022, 71(24): 245203. doi: 10.7498/aps.71.20221848
    [3] 王智环, 贾雷明, 何增, 田宙. 冲击载荷下线性硬化材料中球面应力波场的理论计算方法研究. 物理学报, 2022, 71(1): 018301. doi: 10.7498/aps.71.20210954
    [4] 韩玉, 李磊, 闫镔, 席晓琦, 胡国恩. 一种基于Radon逆变换的半覆盖螺旋锥束CT重建算法. 物理学报, 2015, 64(5): 058704. doi: 10.7498/aps.64.058704
    [5] 余海军, 杜建明, 张秀兰. 相干态的小波变换. 物理学报, 2012, 61(16): 164205. doi: 10.7498/aps.61.164205
    [6] 董建军, 曹柱荣, 陈伯伦, 黄天暄, 缪文勇, 张继彦, 刘慎业, 江少恩, 丁永坤, 谷渝秋, 单连强. 基于Abel逆变换的辐射驱动内爆壳层密度分布研究. 物理学报, 2012, 61(11): 115206. doi: 10.7498/aps.61.115206
    [7] 顾旭东, 赵正予, 倪彬彬, 王 翔, 邓 峰. 地基高频加热激励ELF/VLF波对辐射带高能电子的准线性散射. 物理学报, 2008, 57(10): 6673-6682. doi: 10.7498/aps.57.6673
    [8] 卞保民, 杨 玲, 张 平, 纪运景, 李振华, 倪晓武. 理想气体球面强冲击波一般自模拟运动模型. 物理学报, 2006, 55(8): 4181-4187. doi: 10.7498/aps.55.4181
    [9] 陶永梅, 蒋 青, 曹海霞. 用横场伊辛模型研究应力对铁电薄膜的热力学性质的影响. 物理学报, 2005, 54(1): 274-279. doi: 10.7498/aps.54.274
    [10] 张晓明, 彭建华, 张入元. 利用线性可逆变换增强延迟反馈方法控制混沌的有效性. 物理学报, 2005, 54(7): 3019-3026. doi: 10.7498/aps.54.3019
    [11] 余寿绵, 余恬. 索末菲球面波公式的协变形式及其在光纤理论中的应用. 物理学报, 2001, 50(6): 1097-1102. doi: 10.7498/aps.50.1097
    [12] 邱华檀, 王友年. 快速C60离子团在固体中的库仑爆炸过程Ⅰ——球壳层模型. 物理学报, 2000, 49(8): 1528-1533. doi: 10.7498/aps.49.1528
    [13] 邱华檀, 王友年. 快速C60离子团在固体中的库仑爆炸过程Ⅱ——分子动力学模拟. 物理学报, 2000, 49(8): 1534-1540. doi: 10.7498/aps.49.1534
    [14] 楼森岳. 利用Miura型不可逆变换得到高维可积模型. 物理学报, 2000, 49(9): 1657-1662. doi: 10.7498/aps.49.1657
    [15] 王友年. 快速H+2在固体中穿行时产生的动力学相互作用力及库仑爆炸图形的演化. 物理学报, 1999, 48(6): 011118. doi: 10.7498/aps.48.11118
    [16] 孙宗琦, 蒋方忻. 间隙原子非线性应力感生扩散的简化弹性偶极子模型. 物理学报, 1989, 38(10): 1679-1686. doi: 10.7498/aps.38.1679
    [17] 李富斌. 四维Minkowski空间中具有立方非线性复标量场方程的平面与球面波解. 物理学报, 1988, 37(9): 1461-1470. doi: 10.7498/aps.37.1461
    [18] 胡海昌. 球面各向同性体弹性力学的一般理论. 物理学报, 1954, 10(1): 57-70. doi: 10.7498/aps.10.57
    [19] 刘叔仪. 关於固体的现实应力空间(续). 物理学报, 1954, 10(3): 171-186. doi: 10.7498/aps.10.171
    [20] 刘叔仪. 关於固体的现實应力空间. 物理学报, 1954, 10(1): 13-34. doi: 10.7498/aps.10.13
计量
  • 文章访问数:  6133
  • PDF下载量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-09
  • 修回日期:  2014-12-05
  • 刊出日期:  2015-05-05

/

返回文章
返回