搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地球自转速率变化的非线性特性

雷雨 赵丹宁 乔海花

引用本文:
Citation:

地球自转速率变化的非线性特性

雷雨, 赵丹宁, 乔海花

Nonlinear Characteristics of the Variations of Earth’s Rotation Rate

Lei Yu, Zhao Dan-Ning, Qiao Hai-hua
PDF
导出引用
  • 为研究地球自转速率变化的非线性特性,结合自适应噪声完备经验模态分解、定量递归分析和Grassberger-Procaccia算法,从周期、混沌和分形多角度对1962年1月1日至2023年12月31日反映地球自转速率变化的日长变化(length of day,ΔLOD)观测序列的非线性特性进行全面分析,并着重对比分析扣除周期成分或混沌成分前后ΔLOD特性是否存在明显区别。主要结论如下:1)ΔLOD时间序列由趋势成分、周期成分和混沌成分构成,具有明显的多时间尺度、混沌动力学特性和分形结构;2)扣除混沌成分后的时间序列周期与原始ΔLOD时间序列的周期完全相同;3)原始ΔLOD时间序列和其扣除趋势成分和周期成分后的时间序列的混沌特性无显著性差异,但前者分形结构的复杂性相对更强。
    To study the nonlinear characteristics of changes in the Earth's rotation rate, a comprehensive analysis of the nonlinear characteristics of the length of day (ΔLOD) observations reflecting changes in the Earth's rotation rate was conducted from multiple perspectives, including periodicity, chaos, and fractal, using the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), recursive quantitative analysis (RAQ), and Grassberger-Procaccia (GP) algorithms. The long-term high-accuracy ΔLOD observations from January 1, 1962 to December 31, 2023 were used as dataset published by the International Earth Rotation and Reference Systems Service, IERS) 14C04 series for fulfilling the comprehensive analysis and then achieve a reliable analyzed results. In the presented work, the emphasis was placed on comparing and analyzing whether there were significant differences in the ΔLOD characteristics before and after deducting the periodic or chaotic components of ΔLOD time series. The main conclusions are as follows. 1) The ΔLOD time series consists of the well-know trend components and many periodic components as well as chaotic components, and can therefore be characterized by obvious multi timescales, chaotic dynamics characteristics, and fractal structure. The characteristics were not noticed in previous research. 2) The period of the ΔLOD time series after deducting the chaotic components is exactly the same as the period of the original ΔLOD time series, implying that the chaotic components have no effects on reconstruction and analysis of the periodic components. 3) There is no significant difference in the chaotic characteristics between the original ΔLOD time series and its time series after deducting trend and periodic components, but the complexity of the fractal structure of the former is relatively stronger. Not only can this work provide a valuable reference to study the mechanism for changes in the Earth's rotation rate, but also model such rotation changes and then predict the chances in different timescales.
  • [1]

    Holme R, de Viron O 2013 Nature. 499 202

    [2]

    Buffett B, Knezek N, Holme R 2016 Geophys. J. Int. 204 1789

    [3]

    Meyrath T, van Dam T 2016 J. GEODYN. 99 1

    [4]

    Milyukov V, Mironov A, Kravchuk V, Amoruso A, Crescentini L 2013 J. GEODYN. 67 97

    [5]

    Duan P S, Liu G Y, Liu L T, Hu X G, Hao X G, Huang Y, Zhang Z M, Wang B B 2015 Earth, Planets Space. 67 161

    [6]

    An Y C, Ding H, Chen Z F, Shen W B, Jiang W P 2023 Nat. Commun. 14 8130

    [7]

    Wolfgang R D, Daniela Thaller 2023 IERS Annual Report 2019 (Central Bureau. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie) p1233-127

    [8]

    Bizouard C, Lambert S, Gattano C, Becker O, Richard J Y 2019 J. GEODESY. 93 621

    [9]

    Ray R D, Erofeeva S Y 2013 J. Geophys. Res.: Solid Earth. 119 1498

    [10]

    Dill R, Dobslaw H 2019 Geophys. J. Int. 218 801

    [11]

    Chen J L, Wilson C R, Kuang W J, Chao B F 2019 J. Geophys. Res.: Solid Earth. 124 13404

    [12]

    Yu N, Ray J, Li J C, Chen G, Chao N F, Chen W 2021 Earth, Planets Space. 8 1563

    [13]

    Chao B F, Chung W Y, Shih Z R, Hsieh Y 2014 Terra Nova. 26 260

    [14]

    Shen W B, Peng C C 2016 Geodesy and Geodynamics. 7 180

    [15]

    Ding H 2019 Earth Planet. Sci. Lett. 507 131

    [16]

    Duan P S, Huang C L 2020 Nat. Commun. 11 2273

    [17]

    Ding H, Chao B F 2018 J. Geophys. Res.: Solid Earth. 123 8249

    [18]

    Ogunjo S, Rabiu B, Fuwape I, Atikekeresola O 2024 ADV. SPACE. RES. 73 5406

    [19]

    Bolzan M J A, Paula K S S 2023 ADV. SPACE. RES. 71 5114

    [20]

    David V, Galtier S, Meyrand R 2024 Phys. Rev. Lett. 132 85201

    [21]

    Zhou S, Fen Y, Wu W Y 2015 Acta Phys. Sin. 64 249601 (in Chinese) [周双,冯勇,吴文渊 2015 物理学报 64 249601]

    [22]

    Charles L, Marwan N 2015 Recurrence Quantification Analysis: Theory and Best Practices (New York: Springer) p43-45

    [23]

    Falconer K 2013 Fractals: A Very Short Introduction (New York: Oxford University Press) p35-36

    [24]

    Fernández Martínez M, Sánchez-Granero M Á 2014 TOPOL. APPL. 163 93

    [25]

    Leonov G A, Florinskii A A 2019 VESTN. ST. PETER. U-MAT. 52 327

    [26]

    Rosenberg E 2020 Fractal Dimensions of Networks (New York: Springer) p177-179

    [27]

    Bizouard C, Lambert S, Gattano C, Becker O, Richard J Y 2019 J GEODYN 93 621

    [28]

    Yeh J R, Shieh J S, Huang N 2010 Adv. Adapt. Data. Anal. 2 135

    [29]

    Oppenheim A V, Schafer R W 2009 Discrete-Time Signal Processing (Upper Saddle River: Prentice Hall Press) p53-60

    [30]

    Echmann J P, Kamphorst S O, Ruelle D 1987 Europhys. Lett. 4 973

    [31]

    Grassberger P, Procaccia 1983 Physica. D. 9 189

    [32]

    Shi S, Zhou Y H, Xu X Q 2017 Progress in Astronomy 39 448 (in Chinese) [师思,周永宏,许雪晴 2017 天文学进展 39 448]

    [33]

    Dill R, Dobslaw H 2019 Geophys. J. Int. 218 801

    [34]

    Wang C J, Li H Y, Zhao D 2018 Circ. Syst. Signal. Pr. 37 5417\

    [35]

    Chen J L, Wilson C R, Kuang W J, Chao B F 2019 J. Geophys. Res.: Solid Earth. 124 13404

    [36]

    Xu X Q, Dong D N, Zhou Y H 2014 Progress in Astronomy 32 338 (in Chinese) [许雪晴,董大南,周永宏 2014 天文学进展 32 338]

    [37]

    Ding H, Li J C, Jiang W P, Shen W B 2024 Chin. Sci. Bull. 69 2038

  • [1] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电. 物理学报, doi: 10.7498/aps.70.20210362
    [2] 颜森林. 激光局域网络的混沌控制及并行队列同步. 物理学报, doi: 10.7498/aps.70.20201251
    [3] 许子非, 缪维跑, 李春, 金江涛, 李蜀军. 流场非线性特征提取与混沌分析. 物理学报, doi: 10.7498/aps.69.20200625
    [4] 刘德浩, 任芮彬, 杨博, 罗懋康. 涨落作用下周期驱动的分数阶过阻尼棘轮模型的混沌输运现象. 物理学报, doi: 10.7498/aps.64.220501
    [5] 唐洁. 基于集合经验模态分解的类星体光变周期及其混沌特性分析. 物理学报, doi: 10.7498/aps.63.049701
    [6] 行鸿彦, 龚平, 徐伟. 海杂波背景下小目标检测的分形方法. 物理学报, doi: 10.7498/aps.61.160504
    [7] 古华光, 惠磊, 贾冰. 一类位于加周期分岔中的貌似混沌的随机神经放电节律的识别. 物理学报, doi: 10.7498/aps.61.080504
    [8] 郑艳斌, 宋煜, 杜宝祥, 潘晶, 丁群. 一种混沌密码序列周期特性检测新方法. 物理学报, doi: 10.7498/aps.61.230501
    [9] 杨娟, 卞保民, 彭刚, 李振华. 随机信号双参数脉冲模型的分形特征. 物理学报, doi: 10.7498/aps.60.010508
    [10] 张丽, 刘树堂. 薄板热扩散分形生长的环境干扰控制. 物理学报, doi: 10.7498/aps.59.7708
    [11] 牛超, 李夕海, 刘代志. 地球变化磁场Z分量的混沌动力学特性分析. 物理学报, doi: 10.7498/aps.59.3077
    [12] 姜泽辉, 郭波, 张峰, 王福力. 摩擦力对非弹性蹦球倍周期运动的影响. 物理学报, doi: 10.7498/aps.59.8444
    [13] 柳宁, 李俊峰, 王天舒. 双足模型步行中的倍周期步态和混沌步态现象. 物理学报, doi: 10.7498/aps.58.3772
    [14] 姜泽辉, 赵海发, 郑瑞华. 完全非弹性蹦球倍周期运动的分形特征. 物理学报, doi: 10.7498/aps.58.7579
    [15] 孟田华, 赵国忠, 张存林. 亚波长分形结构太赫兹透射增强的机理研究. 物理学报, doi: 10.7498/aps.57.3846
    [16] 晋建秀, 丘水生, 谢丽英, 冯明库. 一种基于周期轨道统计的混沌信号不可预测性强弱的检测方法. 物理学报, doi: 10.7498/aps.57.2743
    [17] 李 彤, 商朋见. 多重分形在掌纹识别中的研究. 物理学报, doi: 10.7498/aps.56.4393
    [18] 疏学明, 方 俊, 申世飞, 刘勇进, 袁宏永, 范维澄. 火灾烟雾颗粒凝并分形特性研究. 物理学报, doi: 10.7498/aps.55.4466
    [19] 颜森林. 注入半导体激光器混沌相位周期控制方法研究. 物理学报, doi: 10.7498/aps.55.5109
    [20] 王培杰, 吴国祯. 混沌体系中寻找周期轨迹的方法. 物理学报, doi: 10.7498/aps.54.3034
计量
  • 文章访问数:  110
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-04

/

返回文章
返回