搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摩擦力对非弹性蹦球倍周期运动的影响

姜泽辉 郭波 张峰 王福力

引用本文:
Citation:

摩擦力对非弹性蹦球倍周期运动的影响

姜泽辉, 郭波, 张峰, 王福力

Effect of frictional force on subharmonic bifurcations of a completely inelastic ball bouncing on a vibrating table

Jiang Ze-Hui, Guo Bo, Zhang Feng, Wang Fu-Li
PDF
导出引用
  • 分析了摩擦力对竖直振动台面上完全非弹性蹦球动力学行为的影响.当控制参数Γ由1逐渐增大时,作用在蹦球上的恒定摩擦力不会改变倍周期分岔的序列,但会使倍周期分岔点的数值变大.与无摩擦力时的情况相比,在飞行时间的分岔图中也存在倍周期分岔密集区,只是被横向拉伸纵向压缩,且具有不同的分形特性.与受振颗粒体系中的倍周期分岔过程做了比较,发现当摩擦力取值为颗粒总重量的20%—30%时两者符合很好.
    The behavior of a completely inelastic ball bouncing on a vertically vibrating table in the presence of frictional force is investigated. The frictional force is assumed to be constant. It is found that the sequence of bifurcation, controlled solely by the normalized vibration acceleration Γ, is the same as that in the absence of frictional force, but the value of each bifurcation point becomes larger. In the bifurcation diagram of ball flight time, the structure consisting of an infinity of bifurcation cascades in a narrow range of Γ is observed. Compared with that of no frictional force, it is longitudinally compressed and transversely stretched, and has a different fractal property. A comparison with the bifurcations observed in vertically vibrated granular beds is also made. When the fractional force is set to be 20%—30% of the whole weight of the particles, the results from the bouncing ball model are in good agreement with experimental observations.
    • 基金项目: 国家自然科学基金(批准号:10974038,10674035)资助的课题.
    [1]

    Tufillaro N B, Abbott T, Reilly J 1992 An Experimental Approach to Nonlinear Dynamics and Chaos (New York: Addison-Wesley Publishing Company)

    [2]

    Pierański P 1988 Phys. Rev. A 37 1782

    [3]

    Holmes P J 1982 J. Sound Vib. 84 173

    [4]

    Mehta A, Luck J M 1990 Phys. Rev. Lett. 65 393

    [5]

    Luck J M, Mehta A 1993 Phys. Rev. E 48 3988

    [6]

    Jiang Z H, Zheng R H, Zhao H F, Wu J 2007 Acta Phys. Sin. 56 3727 (in Chinese)[姜泽辉、郑瑞华、赵海发、吴 晶 2007 物理学报 56 3727]

    [7]

    Jiang Z H, Zhao H F, Zheng R H 2009 Acta Phys. Sin. 58 7579 (in Chinese)[姜泽辉、赵海发、郑瑞华 2009 物理学报 58 7579]

    [8]

    Gilet T, Vandewalle N, Dorbolo S 2009 Phys. Rev. E 79 055201

    [9]

    Melo F, Umbanhowar P B, Swinney H L 1995 Phys. Rev. Lett. 75 3838

    [10]

    Moon S J, Shattuck M D, Bizon C, Goldman D I, Swift J B, Swinney H L 2001 Phys. Rev. E 65 11301

    [11]

    Luding S, Clément E, Blumen A, Rajchenbach J, Duran J 1994 Phys. Rev. E 49 1634

    [12]

    Douady S, Fauve S, Laroche C 1989 Europhys. Lett. 8 621

    [13]

    Wassgren C R, Brennen C E, Hunt M L 1996 J. Appl. Mech. 63 712

    [14]

    Aoki K M, Akiyama T, Yamamoto K, Yoshikawa T 1997 Europhys. Lett. 40 159

    [15]

    Jiang Z H, Wang Y Y, Wu J 2006 Europhys. Lett. 74 417

    [16]

    Jiang Z H, Li B, Zhao H F, Wang Y Y, Dai Z B 2005 Acta Phys. Sin. 54 1273 (in Chinese)[姜泽辉、李 斌、赵海发、 王运鹰、戴智斌 2005 物理学报 54 1273] 〖17] Jiang Z H, Liu X Y, Peng Y J, Li J W 2005 Acta Phys. Sin. 54 5692 (in Chinese)[姜泽辉、刘新影、彭雅晶、李建伟 2005 物理学报 54 5692]

    [17]

    Pastor J M, Maza D, Zuriguel I, Garcimartín A, Boudet J F 2007 Physica D 232 128

    [18]

    Ho C K, Webb S W 2006 Gas Transport in Porous Media (Dordrecht: Springer) pp5—26

    [19]

    Nield D A, Bejan A 2006 Convection in Porous Media (3rd ed) (New York: Springer) Chap 1

    [20]

    Pak H K, Doorn E V, Behringer R P 1995 Phys. Rev. Lett. 74 4643

    [21]

    Yan X, Shi Q, Hou M, Lu K, Chan C K 2003 Phys. Rev. Lett. 91 14302

    [22]

    Mbius M E, Cheng X, Eshuis P, Karczmar G S, Nagel S R, Jaeger H M 2005 Phys. Rev.E 72 011304

    [23]

    Akiyama T, Kimura N, Iguchi T 1996 Powder Technol. 89 133

    [24]

    Akiyama T, Yoshikawa T 1999 Powder Technol. 103 139

    [25]

    Jiang Z H, Jing Y F, Zhao H F, Zheng R H 2009 Acta Phys. Sin. 58 5923 (in Chinese) [姜泽辉、荆亚芳、赵海发、郑瑞华 2009 物理学报 58 5923]

    [26]

    Evasque P, Szmatula E, Denis J P 1990 Europhys. Lett. 12 623

    [27]

    Knight J B, Jaeger H M, Nagel S R 1993 Phys. Rev. Lett. 70 3728

    [28]

    Jiang Z H, Wang Y Y, Wu J 2006 Acta Phys. Sin. 55 4748 (in Chinese) [姜泽辉、王运鹰、吴 晶 2006 物理学报 55 4748]

    [29]

    Zeilstra C, Collignon J G, van der Hoef M A, Deen N G, Kuipers J A M 2008 Powder Technol. 184 166

  • [1]

    Tufillaro N B, Abbott T, Reilly J 1992 An Experimental Approach to Nonlinear Dynamics and Chaos (New York: Addison-Wesley Publishing Company)

    [2]

    Pierański P 1988 Phys. Rev. A 37 1782

    [3]

    Holmes P J 1982 J. Sound Vib. 84 173

    [4]

    Mehta A, Luck J M 1990 Phys. Rev. Lett. 65 393

    [5]

    Luck J M, Mehta A 1993 Phys. Rev. E 48 3988

    [6]

    Jiang Z H, Zheng R H, Zhao H F, Wu J 2007 Acta Phys. Sin. 56 3727 (in Chinese)[姜泽辉、郑瑞华、赵海发、吴 晶 2007 物理学报 56 3727]

    [7]

    Jiang Z H, Zhao H F, Zheng R H 2009 Acta Phys. Sin. 58 7579 (in Chinese)[姜泽辉、赵海发、郑瑞华 2009 物理学报 58 7579]

    [8]

    Gilet T, Vandewalle N, Dorbolo S 2009 Phys. Rev. E 79 055201

    [9]

    Melo F, Umbanhowar P B, Swinney H L 1995 Phys. Rev. Lett. 75 3838

    [10]

    Moon S J, Shattuck M D, Bizon C, Goldman D I, Swift J B, Swinney H L 2001 Phys. Rev. E 65 11301

    [11]

    Luding S, Clément E, Blumen A, Rajchenbach J, Duran J 1994 Phys. Rev. E 49 1634

    [12]

    Douady S, Fauve S, Laroche C 1989 Europhys. Lett. 8 621

    [13]

    Wassgren C R, Brennen C E, Hunt M L 1996 J. Appl. Mech. 63 712

    [14]

    Aoki K M, Akiyama T, Yamamoto K, Yoshikawa T 1997 Europhys. Lett. 40 159

    [15]

    Jiang Z H, Wang Y Y, Wu J 2006 Europhys. Lett. 74 417

    [16]

    Jiang Z H, Li B, Zhao H F, Wang Y Y, Dai Z B 2005 Acta Phys. Sin. 54 1273 (in Chinese)[姜泽辉、李 斌、赵海发、 王运鹰、戴智斌 2005 物理学报 54 1273] 〖17] Jiang Z H, Liu X Y, Peng Y J, Li J W 2005 Acta Phys. Sin. 54 5692 (in Chinese)[姜泽辉、刘新影、彭雅晶、李建伟 2005 物理学报 54 5692]

    [17]

    Pastor J M, Maza D, Zuriguel I, Garcimartín A, Boudet J F 2007 Physica D 232 128

    [18]

    Ho C K, Webb S W 2006 Gas Transport in Porous Media (Dordrecht: Springer) pp5—26

    [19]

    Nield D A, Bejan A 2006 Convection in Porous Media (3rd ed) (New York: Springer) Chap 1

    [20]

    Pak H K, Doorn E V, Behringer R P 1995 Phys. Rev. Lett. 74 4643

    [21]

    Yan X, Shi Q, Hou M, Lu K, Chan C K 2003 Phys. Rev. Lett. 91 14302

    [22]

    Mbius M E, Cheng X, Eshuis P, Karczmar G S, Nagel S R, Jaeger H M 2005 Phys. Rev.E 72 011304

    [23]

    Akiyama T, Kimura N, Iguchi T 1996 Powder Technol. 89 133

    [24]

    Akiyama T, Yoshikawa T 1999 Powder Technol. 103 139

    [25]

    Jiang Z H, Jing Y F, Zhao H F, Zheng R H 2009 Acta Phys. Sin. 58 5923 (in Chinese) [姜泽辉、荆亚芳、赵海发、郑瑞华 2009 物理学报 58 5923]

    [26]

    Evasque P, Szmatula E, Denis J P 1990 Europhys. Lett. 12 623

    [27]

    Knight J B, Jaeger H M, Nagel S R 1993 Phys. Rev. Lett. 70 3728

    [28]

    Jiang Z H, Wang Y Y, Wu J 2006 Acta Phys. Sin. 55 4748 (in Chinese) [姜泽辉、王运鹰、吴 晶 2006 物理学报 55 4748]

    [29]

    Zeilstra C, Collignon J G, van der Hoef M A, Deen N G, Kuipers J A M 2008 Powder Technol. 184 166

  • [1] 何菲菲, 彭政, 颜细平, 蒋亦民. 振动颗粒混合物中的周期性分聚现象与能量耗散. 物理学报, 2015, 64(13): 134503. doi: 10.7498/aps.64.134503
    [2] 韩红, 姜泽辉, 李翛然, 吕晶, 张睿, 任杰骥. 器壁滑动摩擦力对受振颗粒体系中冲击力倍周期分岔过程的影响. 物理学报, 2013, 62(11): 114501. doi: 10.7498/aps.62.114501
    [3] 王敩青, 戴栋, 郝艳捧, 李立浧. 大气压氦气介质阻挡放电倍周期分岔及混沌现象的实验验证. 物理学报, 2012, 61(23): 230504. doi: 10.7498/aps.61.230504
    [4] 季顺迎, 李鹏飞, 陈晓东. 冲击荷载下颗粒物质缓冲性能的试验研究. 物理学报, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [5] 周志刚, 石玉仁, 刘丛波, 王光辉, 杨红娟. 非弹性蹦球的动力学研究. 物理学报, 2012, 61(20): 200501. doi: 10.7498/aps.61.200501
    [6] 李冠林, 李春阳, 陈希有, 牟宪民. 电流模式SEPIC变换器倍周期分岔现象研究. 物理学报, 2012, 61(17): 170506. doi: 10.7498/aps.61.170506
    [7] 姜泽辉, 韩红, 李翛然, 王福力. 空气阻力对完全非弹性蹦球动力学行为的影响. 物理学报, 2012, 61(24): 240502. doi: 10.7498/aps.61.240502
    [8] 姜泽辉, 荆亚芳, 赵海发, 郑瑞华. 振动颗粒物质中倍周期运动对尺寸分离的影响. 物理学报, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [9] 姜泽辉, 赵海发, 郑瑞华. 完全非弹性蹦球倍周期运动的分形特征. 物理学报, 2009, 58(11): 7579-7583. doi: 10.7498/aps.58.7579
    [10] 杨 汝, 张 波, 褚利丽. 开关变换器倍周期分岔精细层次结构及其普适常数研究. 物理学报, 2008, 57(5): 2770-2778. doi: 10.7498/aps.57.2770
    [11] 王学梅, 张 波, 丘东元. 不连续导电模式DC-DC变换器的倍周期分岔机理研究. 物理学报, 2008, 57(5): 2728-2736. doi: 10.7498/aps.57.2728
    [12] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [13] 姜泽辉, 郑瑞华, 赵海发, 吴 晶. 完全非弹性蹦球的动力学行为. 物理学报, 2007, 56(7): 3727-3732. doi: 10.7498/aps.56.3727
    [14] 冯进钤, 徐 伟, 王 蕊. 随机Duffing单边约束系统的倍周期分岔. 物理学报, 2006, 55(11): 5733-5739. doi: 10.7498/aps.55.5733
    [15] 唐驾时, 欧阳克俭. logistic模型的倍周期分岔控制. 物理学报, 2006, 55(9): 4437-4441. doi: 10.7498/aps.55.4437
    [16] 疏学明, 方 俊, 申世飞, 刘勇进, 袁宏永, 范维澄. 火灾烟雾颗粒凝并分形特性研究. 物理学报, 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
    [17] 姜泽辉, 王运鹰, 吴 晶. 窄振动颗粒床中的运动模式. 物理学报, 2006, 55(9): 4748-4753. doi: 10.7498/aps.55.4748
    [18] 马少娟, 徐 伟, 李 伟, 靳艳飞. 基于Chebyshev多项式逼近的随机 van der Pol系统的倍周期分岔分析. 物理学报, 2005, 54(8): 3508-3515. doi: 10.7498/aps.54.3508
    [19] 姜泽辉, 李 斌, 赵海发, 王运鹰, 戴智斌. 竖直振动颗粒物厚层中冲击力分岔现象. 物理学报, 2005, 54(3): 1273-1278. doi: 10.7498/aps.54.1273
    [20] 姜泽辉, 刘新影, 彭雅晶, 李建伟. 竖直振动颗粒床中的倍周期运动. 物理学报, 2005, 54(12): 5692-5698. doi: 10.7498/aps.54.5692
计量
  • 文章访问数:  6535
  • PDF下载量:  953
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-13
  • 修回日期:  2010-07-13
  • 刊出日期:  2010-06-05

摩擦力对非弹性蹦球倍周期运动的影响

  • 1. 哈尔滨工业大学物理系,哈尔滨 150001
    基金项目: 国家自然科学基金(批准号:10974038,10674035)资助的课题.

摘要: 分析了摩擦力对竖直振动台面上完全非弹性蹦球动力学行为的影响.当控制参数Γ由1逐渐增大时,作用在蹦球上的恒定摩擦力不会改变倍周期分岔的序列,但会使倍周期分岔点的数值变大.与无摩擦力时的情况相比,在飞行时间的分岔图中也存在倍周期分岔密集区,只是被横向拉伸纵向压缩,且具有不同的分形特性.与受振颗粒体系中的倍周期分岔过程做了比较,发现当摩擦力取值为颗粒总重量的20%—30%时两者符合很好.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回