搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能重离子辐照的低活化钢硬化效应

丁兆楠 杨义涛 宋银 张丽卿 缑洁 张崇宏 罗广南

引用本文:
Citation:

高能重离子辐照的低活化钢硬化效应

丁兆楠, 杨义涛, 宋银, 张丽卿, 缑洁, 张崇宏, 罗广南

Hardening of reduced activation ferritic/martensitic steels under the irradiation of high-energy heavy-ion

Ding Zhao-Nan, Yang Yi-Tao, Song Yin, Zhang Li-Qing, Gou Jie, Zhang Chong-Hong, Luo Guang-Nan
PDF
导出引用
  • 为了探讨聚变堆候选低活化钢的抗辐照性能,在兰州重离子加速器国家实验室HIRFL的材料辐照终端,利用63 MeV的14N离子和336 MeV的56Fe离子在-50℃下对一种国产低活化钢进行辐照实验.借助离子梯度减能装置,使入射离子能量在0.22-6.17 MeV/u之间变化,从而在样品表面至24 μm深度范围内产生0.05-0.20 dpa的原子离位损伤坪区.利用纳米压痕仪测试样品辐照前后的显微硬度,通过连续刚度测量(constant stiffness measurement)得到低活化钢硬度的深度剖面信息.使用Nix-Gao模型很好地描述了纳米压痕硬度随深度递减的现象(压痕尺寸效应,indentation size effect),从而有效避免了低能离子辐照的软基体效应(softer substrate effect).正电子湮灭寿命谱显示低活化钢在辐照之后长寿命成分增加,说明样品中产生了大量缺陷形成空位团,从而导致了材料力学性能的变化,在离子辐照剂量增加至0.2 dpa时,平均寿命τm增加量逐渐变慢,材料中辐照产生的缺陷趋于饱和.
    In order to study the irradiation responses of reduced activation ferritic/martensitic (RAFM) steels which are candidates for fusion reactors, a reduced activation steel is irradiated at a terminal of HIRFL (heavy ion research facility in Lanzhou) with 63 MeV 14N ions and 336 MeV 56Fe ions at -50 ℃. The energies of the incident N/Fe ions are varied from 0.22 MeV/u to 6.17 MeV/u by using an energy degrader at the terminal, so that a plateau region of an atomic displacement damage (0.05-0.2 dpa) is obtained from the near surface to a depth of 24 μm in the specimens. Nanoindentation technique is used to investigate the nano-hardness changes of the samples before and after irradiation. The constant stiffness measurement is used to obtain the depth profile of hardness. The Nix-Gao model taking account of the indentation size effect (ISE) is used to fit the measured hardness and thus a hardness value excluding ISE is obtained. Consequently, the soft substrate effect for lower energy ion irradiation is effectively avoided. It is observed that there seems to be a power function relationship between the hardness and damage for the RAFM steel. The hardness initially increases significantly with the increase of irradiation damage, then increases slowly when the damage reaches to about 0.2 dpa. Positron annihilation is performed to investigate the defect evolution in the material. The positron annihilation lifetime spectra show that the long-lifetime proportion of the RAFM steel increases significantly after being irradiated. This means vacancy clusters are produced by the irradiation, resulting in the change of mechanics property. Even at low irradiation dose, point defects with high density are generated in the steel specimens, and subsequently aggregate into defect clusters, thereby suppressing the dislocation slip.The defect concentration in the material increases continuously with the increase of irradiation damage, which leads to the obvious irradiation hardening phenomenon. When the damage is higher than 0.1 dpa, the increment of mean lifetime gradually decreases due to the existence of a large number of vacancies and dislocations, and it eventually tends to be saturated, which explains why the irradiation hardening increment rate decreases with the increase of irradiation damage in the material.
      通信作者: 张崇宏, c.h.zhang@impcas.ac.cn
    • 基金项目: 国家自然科学基金大科学装置联合基金(批准号:U1532262)和国家磁约束核聚变能发展计划专项(批准号:2011GB108003)资助的课题.
      Corresponding author: Zhang Chong-Hong, c.h.zhang@impcas.ac.cn
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1532262) and the National Magnetic Confinement Fusion Program, China (Grant No. 2011GB108003).
    [1]

    Zinkle S J, Busby J T 2009 Mater. Today 12 12

    [2]

    Ehrlich K 2001 Fusion Eng. Des. 56 71

    [3]

    Abromeit C 1994 J. Nucl. Mater. 216 78

    [4]

    Kohyama A, Katoh Y, Ando M, Jimbo K 2000 Fusion Eng. Des. 51 789

    [5]

    Serruys Y, Ruault M O, Trocellier P, Miro S, Barbu A, Boulanger L, Pellegrino S 2008 C. R. Phys. 9 437

    [6]

    Kiener D, Minor A M, Anderoglu O, Wang Y, Maloy S A, Hosemann P 2012 J. Mater. Res. 27 2724

    [7]

    Hosemann P, Kiener D, Wang Y, Maloy S A 2012 J. Nucl. Mater. 425 136

    [8]

    Nagy P M, Aranyi D, Horvath P, Petö G, Kálmán E 2008 Surf. Interface Anal. 40 875

    [9]

    Zhang C H, Yang Y T, Song Y, Chen J, Zhang L Q, Jang J, Kimura A 2014 J. Nucl. Mater. 455 61

    [10]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instr. Meth. Phys. Res. Sect. B 268 1818

    [11]

    Murakami S, Miyazaki A, Mizuno M 2000 J. Eng. Mater. Tech. 122 60

    [12]

    Yamamoto T, Odette G R, Kishimoto H, Rensman J 2006 J. Nucl. Mater. 356 27

    [13]

    Kim S H, Kwak S Y, Suzuki T 2005 Environ. Sci. Technol. 39 1764

    [14]

    Dupasquier A, Mills Jr A P 1995 Positron Spectroscopy of Solids (Amsterdam: IOS)

    [15]

    Mourino M, Löbl H, Paulin R 1979 Phys. Lett. A 71 106

    [16]

    Taylor C N, Shimada M, Merrill B J, Drigert M W, Akers D W, Hatano Y 2014 Phys. Scr. 2014 014055

    [17]

    Pharr G M, Herbert E G, Gao Y 2010 Annu. Rev. Mater. Res. 40 271

    [18]

    Kasada R, Takayama Y, Yabuuchi K, Kimura A 2011 Fusion Eng. Des. 86 2658

    [19]

    Nix W D, Gao H 1998 J. Mech. Phys. Solids 46 411

    [20]

    Huang H F, Li D H, Li J J, Liu R D, Lei G H, He S X, Huang Q, Yan L 2014 Mater. Trans. 55 1243

    [21]

    Heintze C, Bergner F, Hernández-Mayoral M 2011 J. Nucl. Mater. 417 980

    [22]

    Aruga T, Takamura S, Nakata K, Ito Y 1995 Appl. Surf. Sci. 85 229

    [23]

    Hirata K, Kobayashi Y, Hishita S, Zhao X, Itoh Y, Ohdaira T, Suzuki R, Ujihira Y 1997 Nucl. Instr. and Meth. B 121 267

    [24]

    Tsuchida H, Iwai T, Awano M, Oshima N, Suzuki R, Yasuda K, Batchuluun C, Itoh A 2013 J. Nucl. Mater. 442 S856

    [25]

    Schäfer H E 1987 Phys. Status Solidi A 102 47

    [26]

    Liu F, Xu Y, Zhou H, Li X C, Song Y, Zhang C H, Li Q C, He C Q, Luo G N 2015 Nucl. Instr. Meth. Phys. Res. B 351 23

    [27]

    Chen C L, Richter A, Kogler R, Talut G 2011 J. Nucl. Mater. 412 350

  • [1]

    Zinkle S J, Busby J T 2009 Mater. Today 12 12

    [2]

    Ehrlich K 2001 Fusion Eng. Des. 56 71

    [3]

    Abromeit C 1994 J. Nucl. Mater. 216 78

    [4]

    Kohyama A, Katoh Y, Ando M, Jimbo K 2000 Fusion Eng. Des. 51 789

    [5]

    Serruys Y, Ruault M O, Trocellier P, Miro S, Barbu A, Boulanger L, Pellegrino S 2008 C. R. Phys. 9 437

    [6]

    Kiener D, Minor A M, Anderoglu O, Wang Y, Maloy S A, Hosemann P 2012 J. Mater. Res. 27 2724

    [7]

    Hosemann P, Kiener D, Wang Y, Maloy S A 2012 J. Nucl. Mater. 425 136

    [8]

    Nagy P M, Aranyi D, Horvath P, Petö G, Kálmán E 2008 Surf. Interface Anal. 40 875

    [9]

    Zhang C H, Yang Y T, Song Y, Chen J, Zhang L Q, Jang J, Kimura A 2014 J. Nucl. Mater. 455 61

    [10]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instr. Meth. Phys. Res. Sect. B 268 1818

    [11]

    Murakami S, Miyazaki A, Mizuno M 2000 J. Eng. Mater. Tech. 122 60

    [12]

    Yamamoto T, Odette G R, Kishimoto H, Rensman J 2006 J. Nucl. Mater. 356 27

    [13]

    Kim S H, Kwak S Y, Suzuki T 2005 Environ. Sci. Technol. 39 1764

    [14]

    Dupasquier A, Mills Jr A P 1995 Positron Spectroscopy of Solids (Amsterdam: IOS)

    [15]

    Mourino M, Löbl H, Paulin R 1979 Phys. Lett. A 71 106

    [16]

    Taylor C N, Shimada M, Merrill B J, Drigert M W, Akers D W, Hatano Y 2014 Phys. Scr. 2014 014055

    [17]

    Pharr G M, Herbert E G, Gao Y 2010 Annu. Rev. Mater. Res. 40 271

    [18]

    Kasada R, Takayama Y, Yabuuchi K, Kimura A 2011 Fusion Eng. Des. 86 2658

    [19]

    Nix W D, Gao H 1998 J. Mech. Phys. Solids 46 411

    [20]

    Huang H F, Li D H, Li J J, Liu R D, Lei G H, He S X, Huang Q, Yan L 2014 Mater. Trans. 55 1243

    [21]

    Heintze C, Bergner F, Hernández-Mayoral M 2011 J. Nucl. Mater. 417 980

    [22]

    Aruga T, Takamura S, Nakata K, Ito Y 1995 Appl. Surf. Sci. 85 229

    [23]

    Hirata K, Kobayashi Y, Hishita S, Zhao X, Itoh Y, Ohdaira T, Suzuki R, Ujihira Y 1997 Nucl. Instr. and Meth. B 121 267

    [24]

    Tsuchida H, Iwai T, Awano M, Oshima N, Suzuki R, Yasuda K, Batchuluun C, Itoh A 2013 J. Nucl. Mater. 442 S856

    [25]

    Schäfer H E 1987 Phys. Status Solidi A 102 47

    [26]

    Liu F, Xu Y, Zhou H, Li X C, Song Y, Zhang C H, Li Q C, He C Q, Luo G N 2015 Nucl. Instr. Meth. Phys. Res. B 351 23

    [27]

    Chen C L, Richter A, Kogler R, Talut G 2011 J. Nucl. Mater. 412 350

  • [1] 陈震, 兰明迪, 李国建, 孙尚, 刘诗莹, 王强. 高软磁低电导率Fe-Fe3N薄膜的N原子含量调控. 物理学报, 2023, 72(6): 067502. doi: 10.7498/aps.72.20221577
    [2] 董烨, 朱特, 宋亚敏, 叶凤娇, 张鹏, 杨启贵, 刘福雁, 陈雨, 曹兴忠. 低活化马氏体钢中位错对氦辐照缺陷的影响. 物理学报, 2023, 72(18): 187801. doi: 10.7498/aps.72.20230694
    [3] 王智环, 贾雷明, 何增, 田宙. 冲击载荷下线性硬化材料中球面应力波场的理论计算方法研究. 物理学报, 2022, 71(1): 018301. doi: 10.7498/aps.71.20210954
    [4] 韦炳军, 胡立, 向鑫, 杨飞龙, 张桂凯, 王欢. CLAM钢表面Fe-Al合金渗层的制备. 物理学报, 2021, 70(3): 036801. doi: 10.7498/aps.70.20200762
    [5] 王学扬, 齐志华, 宋颖, 刘东平. 等离子体放电活化生理盐水杀菌应用研究. 物理学报, 2016, 65(12): 123301. doi: 10.7498/aps.65.123301
    [6] 潘凤春, 林雪玲, 陈焕铭. 阳离子空位磁矩起因探讨. 物理学报, 2015, 64(17): 176101. doi: 10.7498/aps.64.176101
    [7] 郑晖, 张崇宏, 陈波, 杨义涛, 赖新春. 氦离子低温预辐照对不锈钢中氦泡生长抑制作用的Monte Carlo模拟研究. 物理学报, 2014, 63(10): 106102. doi: 10.7498/aps.63.106102
    [8] 梁林云, 吕广宏. 金属铁中空位团簇演化行为的相场研究. 物理学报, 2013, 62(18): 182801. doi: 10.7498/aps.62.182801
    [9] 阮文, 谢安东, 余晓光, 伍冬兰. NaBn(n=19)团簇的几何结构和电子性质. 物理学报, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [10] 邹慧, 荆洪阳, 王志平, 关庆丰. 强流脉冲电子束辐照诱发金属纯镍中的空位簇缺陷. 物理学报, 2010, 59(9): 6384-6389. doi: 10.7498/aps.59.6384
    [11] 张帅, 陈喜芳, 阴津华, 张宏伟, 陈京兰, 姜宏伟, 吴光恒. 纳米复合永磁材料中软磁性相交换硬化的研究. 物理学报, 2010, 59(9): 6593-6598. doi: 10.7498/aps.59.6593
    [12] 关庆丰, 程笃庆, 邱冬华, 朱健, 王雪涛, 程秀围. 强流脉冲电子束辐照诱发多晶纯铝中的空位缺陷簇结构. 物理学报, 2009, 58(7): 4846-4852. doi: 10.7498/aps.58.4846
    [13] 杨 致, 闫玉丽, 赵文杰, 雷雪玲, 葛桂贤, 罗有华. FeBN(N≤6)团簇的结构与磁性. 物理学报, 2007, 56(5): 2590-2595. doi: 10.7498/aps.56.2590
    [14] 李领伟, 曹世勋, 黎文峰, 刘 芬, 池长昀, 敬 超, 张金仓. 氧含量对Fe掺杂YBCO体系中载流子局域化与离子团簇效应的影响. 物理学报, 2005, 54(8): 3839-3844. doi: 10.7498/aps.54.3839
    [15] 魏学勤, 郑启光, 辜建辉, 李再光. 连续CO2激光辐照加热不锈钢时的反常温度涨落特性. 物理学报, 1999, 48(12): 2246-2251. doi: 10.7498/aps.48.2246
    [16] 张崇宏, 陈克勤, 王引书, 孙继光. 2.5MeV的He+离子辐照316L不锈钢中氦泡的形核与生长研究. 物理学报, 1997, 46(9): 1774-1781. doi: 10.7498/aps.46.1774
    [17] 石双合, 王绪威, 陈金昌. 原子团Fe4B的电子结构. 物理学报, 1992, 41(6): 929-936. doi: 10.7498/aps.41.929
    [18] 王小刚, 张宏. Fe-V-N稀合金中空位复合体特性的研究(Ⅰ). 物理学报, 1992, 41(9): 1452-1457. doi: 10.7498/aps.41.1452
    [19] 王小刚, 张宏. Fe-V-N稀合金中空位复合体特性的研究(Ⅱ). 物理学报, 1992, 41(9): 1458-1462. doi: 10.7498/aps.41.1458
    [20] 堪季强;龙期威;汪克林. 小空位团浅能级对正电子的声子激发比捕获率. 物理学报, 1989, 38(8): 1360-1363. doi: 10.7498/aps.38.1360
计量
  • 文章访问数:  5100
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-28
  • 修回日期:  2017-03-13
  • 刊出日期:  2017-06-05

/

返回文章
返回