搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高软磁低电导率Fe-Fe3N薄膜的N原子含量调控

陈震 兰明迪 李国建 孙尚 刘诗莹 王强

引用本文:
Citation:

高软磁低电导率Fe-Fe3N薄膜的N原子含量调控

陈震, 兰明迪, 李国建, 孙尚, 刘诗莹, 王强

Control of N atom content in Fe-Fe3N film with high saturation magnetization and low conductivity

Chen Zhen, Lan Ming-Di, Li Guo-Jian, Sun Shang, Liu Shi-Ying, Wang Qiang
PDF
HTML
导出引用
  • 微电子器件具有广泛的应用前景, 为了使微电子器件具有优良的高频特性, 同时具有高饱和磁化强度、低矫顽力以及高电阻率软磁薄膜的研发成为其中的关键. 本文采用射频原子源辅助真空热蒸发方法制备了不同N原子含量的Fe-Fe3N软磁薄膜. 高饱和磁化强度Fe3N相含量和(102)取向度的增大, 使薄膜的饱和磁化强度增大, 相比于Fe薄膜, 饱和磁化强度提高了55.2%, 达到1705.6 emu/cm3 (1 emu/cm3 = 103 A/m). 此外, Fe3N(102)取向度的增大会产生较大的晶格错配, 阻碍Fe和Fe3N晶粒的生长, 使薄膜晶粒尺寸降低, 矫顽力(50.3 Oe (1 Oe = 103/(4π) A/m))比Fe薄膜降低了68.6%. 同时, 较大的晶格错配也会促进载流子散射, 提高了Fe-Fe3N薄膜电阻率, 使得其电阻率(8.80 μΩ·m)比Fe薄膜增大了7倍. 因此, 本文为高饱和磁化强度、低矫顽力以及高电阻率软磁薄膜的研发提供了新方法.
    Microelectronic devices have a wide range of application prospects. In order to make microelectronic devices that have excellent high-frequency characteristics, developing of soft magnetic films with high saturation magnetization, low coercivity and high resistivity becomes the key to the research. In this work, Fe-Fe3N soft magnetic films with different numbers of N atoms are prepared by radio-frequency atomic source assisted vacuum thermal evaporation. Among them, the RF atom source provides N atoms with higher chemical activity than N molecules, which reduces the formation energy between Fe atoms and N atoms. The vacuum thermal evaporation is beneficial to accurately controlling the growth rate, impurity concentration and composition ratio of multiple compounds of the film at the atomic level. The combination of the two Fe aom and N atom is easier to form nitrides with Fe atoms. Thus in this way the Fe-N films with stable structure are obtained. In the prepared Fe-Fe3N soft magnetic film, the introduction of N atoms makes the surface of the film more uniform, resulting in the increase of density. Compared with Fe, surface roughness is reduced by two times, and the crystallinity is obviously enhanced. Owing to the high saturation magnetization, the content of Fe3N phase is increased by 29% and the (102) orientation of Fe3N increases to 0.64. Therefore the directionality of the magnetic moment arrangement is improved. Comparing with Fe film, the saturation magnetization of the film is increased by 55.2%, reaching 1705.6 emu/cm3. In addition, with the increase of the (102) orientation of Fe3N, a large number of lattice mismatches are produced, which impedes the growth of Fe and Fe3N grains and reduces the grain size and anisotropy of the film. Thus the coercivity of the film decreases. The coercivity (50.3 Oe) is 68.6% lower than that of the Fe film. At the same time, the larger lattice mismatch results in the increase of heterointerface, which promotes the carrier scattering and increases the resistivity of Fe-Fe3N thin film. The resistivity (8.80 μΩ·m) of Fe-Fe3N thin film is 7 times higher than that of Fe thin film. Therefore, this research provides a new method for studying and developing soft magnetic films with high saturation magnetization, low coercivity and high resistivity.
      通信作者: 李国建, gjli@epm.neu.edu.cn
    • 基金项目: 国家重点研发计划 (批准号: 2021YFA1600204)资助的课题.
      Corresponding author: Li Guo-Jian, gjli@epm.neu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA1600204).
    [1]

    Fan J P, Sun J, Yang Y, Liang R Y, Jiang Y N, Zhang J, Xu X H 2016 J. Alloy. Compd. 662 541Google Scholar

    [2]

    Huang M Q, Wu C, Jiang Y Z, Yan M 2015 J. Alloy. Compd. 644 124Google Scholar

    [3]

    Shokrollahi H, Janghorban K J 2012 Mater. Process. Tech. 189 1Google Scholar

    [4]

    Patelli N, Cugini F, Wang D, Sanna S, Solzi M, Hahn H, Pasquini L 2021 J. Alloy. Compd. 890 161863Google Scholar

    [5]

    Kim D, Kim J, Lee J, Kang M K, Kim S, Park S H, Kim J, Choa Y H, Lim J H 2019 J. Electrochem. Soc. 166 131Google Scholar

    [6]

    Swain M, Kong H, Lee J, Park S, Jeen H 2018 Mater. Res. Express 5 116104Google Scholar

    [7]

    Zhang Y, Turghun M, Huang C J, Wang T, Wang F F, Shi W Z 2018 Acta Metall. Sin. Engl. 31 623Google Scholar

    [8]

    Brajpuriya R, Rajan S, Jani S, Vyas A 2018 Surf. Interface Anal. 51 371Google Scholar

    [9]

    Liu S Y, Ma Y H, Chang L, Li G J, Wang J H, Wang Q 2018 Thin Solid Films 651 1Google Scholar

    [10]

    Li G J, Li M M, Wang J H, Du J J, Wang K, Wang Q 2017 J. Magn. Magn. Mater. 423 353Google Scholar

    [11]

    Meng B Y, Yang B, Zhang X X, Zhou B H, Li X P, Yu R H 2020 Mater. Chem. Phys. 242 122478Google Scholar

    [12]

    Adi W A, Yunasfi 2020 Mat. Sci. Eng. B 262 114760Google Scholar

    [13]

    Akdogan N G, Akdogan O 2019 AIP Adv. 9 125139Google Scholar

    [14]

    Naito M, Uehara K, Takeda R, Taniyasu Y, Yamamoto H 2015 J. Cryst. Growth. 415 36Google Scholar

    [15]

    Hattori T, Miyamachi T, Yokoyama T, Komori F 2019 J. Phys. Condens. Matter 31 255001Google Scholar

    [16]

    Fang H A, Zhang R, Liu B, Tao Z K, Wang X F, Xie Z L, Xiu X Q, Zheng Y D 2012 J. Phys. D 45 315002Google Scholar

    [17]

    Zhang Y, Mi W B, Wang X C, Zhang X X 2015 Phys. Chem. Chem. Phys. 17 15435Google Scholar

    [18]

    Dirba I, Komissinskiy P, Gutfleisch O, Alff L 2015 J. Appl. Phys. 117 173911Google Scholar

    [19]

    Higashikozono S, Ito K, Takata F, Gushi, Toko K, Suemasu T 2017 J. Cryst. Growth 468 691Google Scholar

    [20]

    Houari A, Matar S F, Belkhir M A, Nakhl M 2007 Phys. Rev. B 75 064420Google Scholar

    [21]

    Telling N D, Jones G A, Grundy P J, Blythe H J 2001 J. Magn. Magn. Mater. 226–230 1659Google Scholar

    [22]

    Mosca D H, Dionisio P H, Schreiner W H, Baumvol T J R, Achete C 1990 J. Appl. Phys. 67 7514Google Scholar

    [23]

    Ji N, Wu Y M, Wang J P 2011 J. Appl. Phys. 109 07B767Google Scholar

    [24]

    Ji N, Osofsky M S, Lauter V, Allard L F, Li X, Jensen K L, Ambaye H, Lara-Curzio E, Wang J P 2011 Phys. Rev. B 84 245310Google Scholar

    [25]

    Ji N A, Allard L F, Lara-Curzio E, Wang J P 2011 Appl. Phys. Lett. 98 092506Google Scholar

    [26]

    Coehoorn R, Daalderop G H O, Jansen H J F 1993 Phys. Rev. B 48 3830Google Scholar

    [27]

    Li Z W, Morrish A H, Ortiz C 2001 J. Mater. Sci. 36 5835Google Scholar

    [28]

    Lu Q H, Xie M L, Han G L, Zheng B, Song Y Z, Qiang J, Wang X Q, Wu Z G, Yan P X, Liu W M 2019 J. Magn. Magn. Mater. 474 76Google Scholar

    [29]

    Fang H, Peng X, Li Y, Tao Z K 2019 Mater. Res. Express 6 106443Google Scholar

    [30]

    Zhang L L, Gao S P, Hu Q W, Qi L, Feng L H, Lei L 2017 Mater. Chem. Phys. 197 94Google Scholar

    [31]

    Nadzri N, Ibrahim D, Sompon S 2019 IOP Conference Series Materials Science and Engineering Beijing, China, May 11-13, 2019 p012047

    [32]

    Hung W, Wang X L 2008 Nanoscale Res. Lett. 3 260Google Scholar

    [33]

    Zhang P, Wang X B, Wang W, Lei X, Yin W X, Yang H 2015 RSC Adv. 5 68758Google Scholar

    [34]

    Sundararajan J A, Kaur M, Jiang W L, McCloy J S, Qiang Y 2014 J. Appl. Phys. 115 17B507Google Scholar

    [35]

    Yamaguchi K, Yui T, Ichikawa Y, Yamaki K, Kakeya I, Kadowaki K, Suemasu T 2006 Jpn. J. Appl. Phys. 45 705Google Scholar

    [36]

    Ahmad Z, Cross G B, Vernon M, Gebregiorgis D, Deocampo D, Kozhanov A 2019 Appl. Phys. Lett. 115 223101Google Scholar

    [37]

    Kikuchi T, Somintac A S, Ariyada O, Wada M, Ohachi T 2006 J. Cryst. Growth 292 221Google Scholar

    [38]

    Kuwano K, Nezu A, Matsuura H, Akatsuka H 2016 Jpn. J. Appl. Phys. 55 086101Google Scholar

    [39]

    Agarwal S, Hoex B, Van De Sanden M C M, Maroudas D, Aydil E S 2003 Appl. Phys. Lett. 83 4918Google Scholar

    [40]

    Du J J, Li G J, Wang Q, Ma Y H, Cao Y Z, He J C 2015 Vacuum 121 88Google Scholar

    [41]

    Sato H, Yamashita D, Ban S 2008 J. Ceram. Soc. Jpn. 116 28Google Scholar

    [42]

    Yin W X, Zhang D G, Zhang P, Wang X B, Wang X B, Wang W, Lei X. Shi Z, Yang H 2016 J. Alloy. Compd. 688 828Google Scholar

    [43]

    Cheng Y H, Zheng R K, Liu H, Tian Y, Li Z Q 2009 Phys. Rev. B 80 174412Google Scholar

    [44]

    Lv Z Q, Fu W T, Sun S H, Wang Z H, Fan W, Qv M G 2010 Solid State Sci. 12 404Google Scholar

    [45]

    Wriedt H, Gokcen G, Nafziger R H 1987 Mater. Sci. 8 355Google Scholar

    [46]

    Fan X A, Wu Z Y, Li G Q, Wang J, Xiang Z D, Gan Z H 2016 Mater. Design 89 1251Google Scholar

    [47]

    Yang B, Li X P, Guo R Y, Yu R H 2017 Mater. Design 121 272Google Scholar

    [48]

    Khan W, Wang Q, Jin X, Feng T F 2017 Materials 10 217Google Scholar

    [49]

    杜娇娇, 李国建, 王强, 马永会, 王慧敏, 李萌萌 2015 金属学报 51 799Google Scholar

    Du J J, Li G J, Wang Q, Ma Y H, Wang H M, Li M M 2015 Acta Metall. Sin. 51 799Google Scholar

    [50]

    Aravindh S A, Jaya S M, Valsakumar M C, Sundar C S 2012 Superlattice. Microst. 51 92Google Scholar

    [51]

    Yartseva N S, Yartsev S V, Parlebas J C 2008 Surf. Sci. 602 3388Google Scholar

    [52]

    Sun Y, Gao R W, Han B P, Liu M, Han G B, Feng W C 2007 Prog. Nat. Sci-Mater. 17 131Google Scholar

    [53]

    Ding J, Li Y, Chen L F, Deng C R, Shi Y, Chow Y S, Gang T B 2001 J. Alloys Compd. 314 262Google Scholar

    [54]

    Herzer G 1990 IEEE. Trans. Mag. 26 1397Google Scholar

    [55]

    Kronmvler H, Fischer R, Seeger M, Zern A 1996 J. Phys. D Appl. Phys. 29 2274Google Scholar

    [56]

    Zhao N, Wang W, Lei X, Ye Z T, Chen X D, Ding H, Yang H 2017 J. Mater. Sci. 28 15701Google Scholar

    [57]

    Gupta R, Tayal A, Amir S M, Gupta M, Gupta A, Horisberger M, Stahn J 2011 J. Appl. Phys. 111 103520Google Scholar

    [58]

    Naganuma H, Nakatani R, Endo Y, Kawamura Y, Yamamoto M 2016 Sci. Technol. Adv. Mat. 5 101Google Scholar

    [59]

    Mayadas A F, Shatzkes M 1970 Phys. Rev. B 1 1382Google Scholar

    [60]

    Zhang Z Z, Wu S X, Niu Y, Jiang J, Wang C 2019 J. Mater. Sci. 30 5177Google Scholar

  • 图 1  不同N2流量的N发射光谱(a)以及N原子峰的面积比和峰强度图(b)

    Fig. 1.  N emission spectra (a) and the area ratio and peak intensity of N atom peaks at different N2 fluxes (b)

    图 2  不同N2流量下的Fe-Fe3N薄膜XRD图谱

    Fig. 2.  XRD patterns of Fe-Fe3N thin films under different N2 flow rates.

    图 3  不同N2流量下Fe-Fe3N薄膜的N 1s (a)和Fe 2p3/2 (b) XPS精细谱、Fe—N键与Fe—Fe键含量比(c)

    Fig. 3.  N 1s (a) and Fe 2p3/2 (b) XPS fine spectra, Fe—N bond and Fe—Fe bond content ratio (c) of Fe-Fe3N films under different N2 flow rates.

    图 4  0 sccm薄膜和15 sccm薄膜中Fe-N体系相图[45]和Fe和N原子的百分含量

    Fig. 4.  Phase diagram of Fe-N system in 0 sccm film and 15 sccm film[45] and percentage of Fe and N atoms.

    图 5  不同N2流量下Fe-Fe3N薄膜的SEM表面形貌图和AFM三维形貌图 (a) 0 sccm; (b) 10 sccm; (c) 13 sccm; (d) 15 sccm

    Fig. 5.  SEM and AFM 3 D morphologies of Fe-Fe3N films under different N2 flow rates: (a) 0 sccm; (b) 10 sccm; (c) 13 sccm; (d) 15 sccm

    图 6  室温时不同N2流量下Fe-Fe3N薄膜面内易轴方向的M-H曲线和0 sccm薄膜、15 sccm薄膜不同方向的M-H曲线

    Fig. 6.  M-H curves of the in-plane easy axis direction of Fe-Fe3N films under different N2 flow rates at room temperature and M-H curves of 0 sccm films and 15 sccm films in different directions.

    图 7  Fe-Fe3N薄膜晶体取向示意图

    Fig. 7.  Schematic diagram of crystal orientation of Fe-Fe3N films.

    图 8  不同N2流量下Fe-Fe3N薄膜室温的迁移率和载流子浓度

    Fig. 8.  Mobility and carrier concentration of Fe-Fe3N films at room temperature under different N2 flow rates.

    图 9  不同N2流量下Fe-Fe3N薄膜室温的饱和磁化强度、矫顽力以及电阻率

    Fig. 9.  Room temperature saturation magnetization, coercivity and resistivity of Fe-Fe3N films under different N2 flow rates.

  • [1]

    Fan J P, Sun J, Yang Y, Liang R Y, Jiang Y N, Zhang J, Xu X H 2016 J. Alloy. Compd. 662 541Google Scholar

    [2]

    Huang M Q, Wu C, Jiang Y Z, Yan M 2015 J. Alloy. Compd. 644 124Google Scholar

    [3]

    Shokrollahi H, Janghorban K J 2012 Mater. Process. Tech. 189 1Google Scholar

    [4]

    Patelli N, Cugini F, Wang D, Sanna S, Solzi M, Hahn H, Pasquini L 2021 J. Alloy. Compd. 890 161863Google Scholar

    [5]

    Kim D, Kim J, Lee J, Kang M K, Kim S, Park S H, Kim J, Choa Y H, Lim J H 2019 J. Electrochem. Soc. 166 131Google Scholar

    [6]

    Swain M, Kong H, Lee J, Park S, Jeen H 2018 Mater. Res. Express 5 116104Google Scholar

    [7]

    Zhang Y, Turghun M, Huang C J, Wang T, Wang F F, Shi W Z 2018 Acta Metall. Sin. Engl. 31 623Google Scholar

    [8]

    Brajpuriya R, Rajan S, Jani S, Vyas A 2018 Surf. Interface Anal. 51 371Google Scholar

    [9]

    Liu S Y, Ma Y H, Chang L, Li G J, Wang J H, Wang Q 2018 Thin Solid Films 651 1Google Scholar

    [10]

    Li G J, Li M M, Wang J H, Du J J, Wang K, Wang Q 2017 J. Magn. Magn. Mater. 423 353Google Scholar

    [11]

    Meng B Y, Yang B, Zhang X X, Zhou B H, Li X P, Yu R H 2020 Mater. Chem. Phys. 242 122478Google Scholar

    [12]

    Adi W A, Yunasfi 2020 Mat. Sci. Eng. B 262 114760Google Scholar

    [13]

    Akdogan N G, Akdogan O 2019 AIP Adv. 9 125139Google Scholar

    [14]

    Naito M, Uehara K, Takeda R, Taniyasu Y, Yamamoto H 2015 J. Cryst. Growth. 415 36Google Scholar

    [15]

    Hattori T, Miyamachi T, Yokoyama T, Komori F 2019 J. Phys. Condens. Matter 31 255001Google Scholar

    [16]

    Fang H A, Zhang R, Liu B, Tao Z K, Wang X F, Xie Z L, Xiu X Q, Zheng Y D 2012 J. Phys. D 45 315002Google Scholar

    [17]

    Zhang Y, Mi W B, Wang X C, Zhang X X 2015 Phys. Chem. Chem. Phys. 17 15435Google Scholar

    [18]

    Dirba I, Komissinskiy P, Gutfleisch O, Alff L 2015 J. Appl. Phys. 117 173911Google Scholar

    [19]

    Higashikozono S, Ito K, Takata F, Gushi, Toko K, Suemasu T 2017 J. Cryst. Growth 468 691Google Scholar

    [20]

    Houari A, Matar S F, Belkhir M A, Nakhl M 2007 Phys. Rev. B 75 064420Google Scholar

    [21]

    Telling N D, Jones G A, Grundy P J, Blythe H J 2001 J. Magn. Magn. Mater. 226–230 1659Google Scholar

    [22]

    Mosca D H, Dionisio P H, Schreiner W H, Baumvol T J R, Achete C 1990 J. Appl. Phys. 67 7514Google Scholar

    [23]

    Ji N, Wu Y M, Wang J P 2011 J. Appl. Phys. 109 07B767Google Scholar

    [24]

    Ji N, Osofsky M S, Lauter V, Allard L F, Li X, Jensen K L, Ambaye H, Lara-Curzio E, Wang J P 2011 Phys. Rev. B 84 245310Google Scholar

    [25]

    Ji N A, Allard L F, Lara-Curzio E, Wang J P 2011 Appl. Phys. Lett. 98 092506Google Scholar

    [26]

    Coehoorn R, Daalderop G H O, Jansen H J F 1993 Phys. Rev. B 48 3830Google Scholar

    [27]

    Li Z W, Morrish A H, Ortiz C 2001 J. Mater. Sci. 36 5835Google Scholar

    [28]

    Lu Q H, Xie M L, Han G L, Zheng B, Song Y Z, Qiang J, Wang X Q, Wu Z G, Yan P X, Liu W M 2019 J. Magn. Magn. Mater. 474 76Google Scholar

    [29]

    Fang H, Peng X, Li Y, Tao Z K 2019 Mater. Res. Express 6 106443Google Scholar

    [30]

    Zhang L L, Gao S P, Hu Q W, Qi L, Feng L H, Lei L 2017 Mater. Chem. Phys. 197 94Google Scholar

    [31]

    Nadzri N, Ibrahim D, Sompon S 2019 IOP Conference Series Materials Science and Engineering Beijing, China, May 11-13, 2019 p012047

    [32]

    Hung W, Wang X L 2008 Nanoscale Res. Lett. 3 260Google Scholar

    [33]

    Zhang P, Wang X B, Wang W, Lei X, Yin W X, Yang H 2015 RSC Adv. 5 68758Google Scholar

    [34]

    Sundararajan J A, Kaur M, Jiang W L, McCloy J S, Qiang Y 2014 J. Appl. Phys. 115 17B507Google Scholar

    [35]

    Yamaguchi K, Yui T, Ichikawa Y, Yamaki K, Kakeya I, Kadowaki K, Suemasu T 2006 Jpn. J. Appl. Phys. 45 705Google Scholar

    [36]

    Ahmad Z, Cross G B, Vernon M, Gebregiorgis D, Deocampo D, Kozhanov A 2019 Appl. Phys. Lett. 115 223101Google Scholar

    [37]

    Kikuchi T, Somintac A S, Ariyada O, Wada M, Ohachi T 2006 J. Cryst. Growth 292 221Google Scholar

    [38]

    Kuwano K, Nezu A, Matsuura H, Akatsuka H 2016 Jpn. J. Appl. Phys. 55 086101Google Scholar

    [39]

    Agarwal S, Hoex B, Van De Sanden M C M, Maroudas D, Aydil E S 2003 Appl. Phys. Lett. 83 4918Google Scholar

    [40]

    Du J J, Li G J, Wang Q, Ma Y H, Cao Y Z, He J C 2015 Vacuum 121 88Google Scholar

    [41]

    Sato H, Yamashita D, Ban S 2008 J. Ceram. Soc. Jpn. 116 28Google Scholar

    [42]

    Yin W X, Zhang D G, Zhang P, Wang X B, Wang X B, Wang W, Lei X. Shi Z, Yang H 2016 J. Alloy. Compd. 688 828Google Scholar

    [43]

    Cheng Y H, Zheng R K, Liu H, Tian Y, Li Z Q 2009 Phys. Rev. B 80 174412Google Scholar

    [44]

    Lv Z Q, Fu W T, Sun S H, Wang Z H, Fan W, Qv M G 2010 Solid State Sci. 12 404Google Scholar

    [45]

    Wriedt H, Gokcen G, Nafziger R H 1987 Mater. Sci. 8 355Google Scholar

    [46]

    Fan X A, Wu Z Y, Li G Q, Wang J, Xiang Z D, Gan Z H 2016 Mater. Design 89 1251Google Scholar

    [47]

    Yang B, Li X P, Guo R Y, Yu R H 2017 Mater. Design 121 272Google Scholar

    [48]

    Khan W, Wang Q, Jin X, Feng T F 2017 Materials 10 217Google Scholar

    [49]

    杜娇娇, 李国建, 王强, 马永会, 王慧敏, 李萌萌 2015 金属学报 51 799Google Scholar

    Du J J, Li G J, Wang Q, Ma Y H, Wang H M, Li M M 2015 Acta Metall. Sin. 51 799Google Scholar

    [50]

    Aravindh S A, Jaya S M, Valsakumar M C, Sundar C S 2012 Superlattice. Microst. 51 92Google Scholar

    [51]

    Yartseva N S, Yartsev S V, Parlebas J C 2008 Surf. Sci. 602 3388Google Scholar

    [52]

    Sun Y, Gao R W, Han B P, Liu M, Han G B, Feng W C 2007 Prog. Nat. Sci-Mater. 17 131Google Scholar

    [53]

    Ding J, Li Y, Chen L F, Deng C R, Shi Y, Chow Y S, Gang T B 2001 J. Alloys Compd. 314 262Google Scholar

    [54]

    Herzer G 1990 IEEE. Trans. Mag. 26 1397Google Scholar

    [55]

    Kronmvler H, Fischer R, Seeger M, Zern A 1996 J. Phys. D Appl. Phys. 29 2274Google Scholar

    [56]

    Zhao N, Wang W, Lei X, Ye Z T, Chen X D, Ding H, Yang H 2017 J. Mater. Sci. 28 15701Google Scholar

    [57]

    Gupta R, Tayal A, Amir S M, Gupta M, Gupta A, Horisberger M, Stahn J 2011 J. Appl. Phys. 111 103520Google Scholar

    [58]

    Naganuma H, Nakatani R, Endo Y, Kawamura Y, Yamamoto M 2016 Sci. Technol. Adv. Mat. 5 101Google Scholar

    [59]

    Mayadas A F, Shatzkes M 1970 Phys. Rev. B 1 1382Google Scholar

    [60]

    Zhang Z Z, Wu S X, Niu Y, Jiang J, Wang C 2019 J. Mater. Sci. 30 5177Google Scholar

  • [1] 刘艺舟, 臧佳栋. 磁性斯格明子的研究现状和展望. 物理学报, 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [2] 李国建, 常玲, 刘诗莹, 李萌萌, 崔伟斌, 王强. 强磁场下Sm-Fe薄膜不同晶态组织演化及磁性能调控. 物理学报, 2018, 67(9): 097501. doi: 10.7498/aps.67.20180212
    [3] 周广宏, 潘旋, 朱雨富. BiFeO3/Ni81Fe19磁性双层膜中的交换偏置及其热稳定性研究. 物理学报, 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [4] 唐军, 刘忠良, 任鹏, 姚涛, 闫文盛, 徐彭寿, 韦世强. Mn掺杂SiC磁性薄膜的结构表征. 物理学报, 2010, 59(7): 4774-4780. doi: 10.7498/aps.59.4774
    [5] 任树洋, 任忠鸣, 任维丽, 操光辉. 3 T强磁场对真空蒸发Zn薄膜晶体结构的影响. 物理学报, 2009, 58(8): 5567-5571. doi: 10.7498/aps.58.5567
    [6] 张弘, 刘曦, 王兰喜, 曹江伟, 刘小晰, 魏福林. 基片对交替溅射制备的MnZn铁氧体薄膜结构和磁性的影响. 物理学报, 2009, 58(7): 4970-4975. doi: 10.7498/aps.58.4970
    [7] 尚淑珍, 邵建达, 范正修, 赵祖欣. 热舟蒸发LaF3薄膜的紫外性能研究. 物理学报, 2008, 57(3): 1941-1945. doi: 10.7498/aps.57.1941
    [8] 展晓元, 张 跃, 齐俊杰, 顾有松, 郑小兰. FePt薄膜中磁相互作用. 物理学报, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [9] 曾凡浩, 章晓中. 脉冲激光沉积制备的Co80Cr20/Ti90Cr10薄膜的结构与磁性. 物理学报, 2007, 56(1): 522-528. doi: 10.7498/aps.56.522
    [10] 王立锦, 滕 蛟, 于广华. 超薄Fe层在反铁磁NiO(001)面上沉积的研究. 物理学报, 2006, 55(8): 4282-4286. doi: 10.7498/aps.55.4282
    [11] 薛双喜, 王 浩, 杨辅军, 王君安, 曹 歆, 汪汉斌, 高 云, 黄忠兵, 冯 洁, W. Y. Cheung, S. P. Wong, 赵子强. Ag对CoPt/Ag纳米复合膜的结构与磁性的影响. 物理学报, 2005, 54(11): 5395-5399. doi: 10.7498/aps.54.5395
    [12] 李锐鹏, 王 劼, 李红红, 郭玉献, 王 锋, 胡志伟. 软x射线磁性圆二色吸收谱研究铁单晶薄膜的面内磁各向异性. 物理学报, 2005, 54(8): 3851-3855. doi: 10.7498/aps.54.3851
    [13] 王 浩, 杨辅军, 薛双喜, 曹 歆, 王君安, 顾豪爽, 赵子强. CoPt(FePt)-C纳米复合膜的结构与磁性. 物理学报, 2005, 54(3): 1415-1419. doi: 10.7498/aps.54.1415
    [14] 王 劼, 李红红, 李锐鹏, 郭玉献, 王雅新. x射线磁性圆二色吸收谱分析Co膜厚度对原子磁矩和自旋磁矩的影响. 物理学报, 2005, 54(11): 5474-5480. doi: 10.7498/aps.54.5474
    [15] 伍瑞新, 陈 平. 磁性Salisbury屏的高频响应. 物理学报, 2004, 53(9): 2915-2918. doi: 10.7498/aps.53.2915
    [16] 王 漪, 韩汝琦, 刘晓彦, 崛口刚. 超薄膜磁性材料上XY模型的临界现象. 物理学报, 2003, 52(7): 1776-1782. doi: 10.7498/aps.52.1776
    [17] 彭子龙, 王伟宁, 朱涛, 韩秀峰, 詹文山. 微细矩形磁性薄膜体系中一致转动磁化模式. 物理学报, 2003, 52(11): 2901-2905. doi: 10.7498/aps.52.2991
    [18] 陈 洪, 阎玉立, 梅 花. 磁性薄膜热动力学性质的变分累积展开研究. 物理学报, 2003, 52(10): 2607-2611. doi: 10.7498/aps.52.2607
    [19] 钟智勇, 兰中文, 张怀武, 刘颖力, 王豪才. 铁磁/非铁磁/铁磁层状薄膜的巨磁阻抗效应的计算. 物理学报, 2001, 50(8): 1610-1615. doi: 10.7498/aps.50.1610
    [20] 王亦忠, 张茂才, 乔, 王 晶, 王荫君, 沈保根, 胡伯平. 各向同性纳米结构Fe-Pt薄膜的结构和磁性. 物理学报, 2000, 49(8): 1600-1605. doi: 10.7498/aps.49.1600
计量
  • 文章访问数:  4579
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-04
  • 修回日期:  2023-01-10
  • 上网日期:  2023-02-09
  • 刊出日期:  2023-03-20

/

返回文章
返回