搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用正电子湮没研究纳米碲化铋的缺陷及其对热导率的影响

贺慧芳 陈志权

引用本文:
Citation:

用正电子湮没研究纳米碲化铋的缺陷及其对热导率的影响

贺慧芳, 陈志权

Positron annihilation studied defects and their influence on thermal conductivity of chemically synthesized Bi2Te3 nanocrystal

He Hui-Fang, Chen Zhi-Quan
PDF
导出引用
  • 利用水热法合成了Bi2Te3纳米粉末, 并在300500 ℃的温度范围内对其进行等离子烧结. X射线衍射测试表明制得的Bi2Te3粉末是单相的. 对于300500 ℃范围内烧结的样品, 扫描电子显微镜观察发现随着烧结温度的升高样品颗粒明显增大, 但是根据X射线衍射峰的宽度计算得到的样品晶粒大小并没有明显的变化. 正电子湮没寿命测试结果表明, 所有的样品中均存在空位型缺陷, 而这些缺陷很可能存在于晶界处. 正电子平均寿命随着烧结温度的升高而单调下降, 说明较高的烧结温度导致了空位型缺陷浓度的降低. 另外, 随着烧结温度从300 ℃升高到500 ℃, 样品的热导率从0.3 Wm-1K-1升高到了2.4 Wm-1K-1, 这表明在纳米Bi2Te3中, 空位型缺陷和热导率之间存在着密切的联系.
    Bismuth telluride (Bi2Te3) and its alloys are regarded as the best thermoelectric materials available nowadays at room temperature and can be well prepared by using existing technology. In this paper, Bi2Te3 nanocrystals are prepared by hydrothermal method and then treated by a spark plasma sintering (SPS) process at five temperatures of 300, 350, 400, 450 and 500 ℃ each for 5 min under a pressure of 20 MPa. X-ray diffraction (XRD) and positron annihilation spectroscopy are used to study the microstructures of the samples after SPS treatment at different temperatures. According to the XRD patterns, the diffraction peaks of the as-grown powder are consistent with those indicated in the standard card for Bi2Te3, which confirms successful synthesis of Bi2Te3 powders. Scanning electron microscope images show that the particles of all the samples take on flake-like structures, and the particle sizes increase from about 100 nm to a few m with the sintering temperature increasing from 350 to 500 ℃. This suggests significant reorganization of nanograins in sintering process, and some grains are agglomerated into larger particles. However, the grain sizes estimated from the X-ray diffraction peaks show little change in all the samples sintered at temperatures between 300-500 ℃. And most of the grains have sizes around 30 nm. Positron lifetime spectra are measured for Bi2Te3 samples sintered at different temperatures. The measurements reveal vacancy defects existing in all the sintered samples. With the increase of sintering temperature, there appears no significant change in trapped positron lifetime (2). This suggests that the defect size has no change during sintering. However, intensity I2 decreases monotonically with increasing sintering temperature, which indicates the lowering of vacancy concentration. The average positron lifetime shows a monotonous decrease with increasing sintering temperature, which indicates the recovery of vacancy defects at higher sintering temperatures. The thermal conductivity of the sample increases from 0.3 Wm-1K-1 to about 2.4 Wm-1K-1 with the sintering temperature increasing from 300 to 500 ℃. Since the lattice thermal conductivity dominates the total thermal conductivity, it can be inferred that sintering at higher temperature leads to the increase of lattice thermal conductivity. According to the positron annihilation lifetime result, the vacancy defects in the interface region gradually recover after sintering at higher temperatures. This shows good correlation with the increase of lattice thermal conductivity, indicating that vacancy-type defects are effective phonon scattering centers for Bi2Te3.
    • 基金项目: 国家自然科学基金(批准号: 11275143, 11305117)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275143, 11305117).
    [1]

    Zhang F, Zhu H T, Luo J, Liang J K, Rao G H, Liu Q L 2010 Acta Phys. Sin. 59 7232 (in Chinese) [张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林 2010 物理学报 59 7232]

    [2]

    Wang Z C, Li H, Su X L, Tang X F 2011 Acta Phys. Sin. 60 027202 (in Chinese) [王作成, 李涵, 苏贤礼, 唐新峰 2011 物理学报 60 027202]

    [3]

    Huo F P, Wu R G, Xu G Y, Niu S T 2012 Acta Phys. Sin. 61 087202 (in Chinese) [霍凤萍, 吴荣归, 徐桂英, 牛四通 2012 物理学报 61 087202]

    [4]

    Ji X, Zhang B, Tritt T M, Kolis J W, Kumbhar A 2007 J. Electron. Mater. 36 721

    [5]

    Slack G A, Tsoukala V G 1994 J. Appl. Phys. 76 1665

    [6]

    Callaway J, von Baeyer H C 1960 Phys. Rev. 120 1149

    [7]

    Klemens P G 1955 Proc. Phys. Soc. A 68 1113

    [8]

    Abeles B 1963 Phys. Rev. 131 1906

    [9]

    Pei Y Z, Morelli D T 2009 Appl. Phys. Lett. 94 122112

    [10]

    Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101

    [11]

    Yu C, Scullin M L, Huijben M, Ramesh R, Majumdar A 2008 Appl. Phys. Lett. 92 191911

    [12]

    Wang Y, Li F, Xu L X, Sui Y, Wang X J, Su W H, Liu X Y 2011 Inorg. Chem. 50 4412

    [13]

    Plirdpring T, Kurosaki K, Kosuga A, Ishimaru M, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2011 Appl. Phys. Lett. 98 172104

    [14]

    Zhu G H, Lan Y C, Wang H, Joshi G, Hao Q, Chen G, Ren Z F 2011 Phys. Rev. B 83 115201

    [15]

    Wiedigen S, Kramer T, Feuchter M, Knorr I, Nee N, Hoffmann J, Kamlah M, Volkert C A, Jooss C 2012 Appl. Phys. Lett. 100 061904

    [16]

    Levander A X, Tong T, Yu K M, Suh J, Fu D, Zhang R, Lu H, Schaff W J, Dubon O, Walukiewicz W, Cahill D G, Wu J 2011 Appl. Phys. Lett. 98 012108

    [17]

    Liu Y, Zhao L D, Liu Y C, Lan J L, Xu W, Li F, Zhang B P, Berardan D, Dragoe N, Lin Y H, Nan C W, Li J F, Zhu H M 2011 J. Am. Chem. Soc. 133 20112

    [18]

    Kato A, Yagi T, Fukusako N 2009 J. Phys.: Condens. Matter 21 205801

    [19]

    Park C H, Kim Y S 2010 Phys. Rev. B 81 085206

    [20]

    Hashibon A, Elsässer C 2011 Phys. Rev. B 84 144117

    [21]

    Alam H, Ramakrishna S 2013 Nano Energy 2 190

    [22]

    Son J S, Choi M K, Han M K, Park K, Kim J Y, Lim S J, Oh M, Kuk Y, Park C, Kim S J, Hyeon T 2012 Nano Lett. 12 640

    [23]

    Fu J P, Song S Y, Zhang X G, Cao F, Zhou L, Li X Y, Zhang H J 2012 Crys. Eng. Comm. 14 2159

    [24]

    Wang X Z, Yang Y M, Zhu L L 2011 J. Appl. Phys. 110 024312

    [25]

    Termentzidis K, Pokropivny A, Woda M, Xiong S Y, Chumakov Y, Cortona, Volz S 2012 J. Phys.: Conference Series 395 012114

    [26]

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Hubei Science and Technology Press) pp18-19 (in Chinese) [王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (湖北科学技术出版社)第18–19页]

    [27]

    Dutta S, Chattopadhyay S, Jana D 2006 J. Appl. Phys. 100 114328

    [28]

    Chakrabarti M, Dutta S, Chattapadhyay S, Sarkar A, Sanyal D, Chakrabarti A 2004 Nanotechnology 15 1792

    [29]

    Tuomisto F, Ranki V, Saarinen K, Look D C 2003 Phys. Rev. Lett. 91 205502

    [30]

    Dutta S, Chakrabarti M, Chattopadhyay S, Jana D, Sanyal D, Sarkar A 2005 J. Appl. Phys. 98 053513

    [31]

    Chakrabarti M, Bhowmick D, Sarkar A, Chattopadhyay S, Dechoudhury S, Sanyal, Chakrabarti A 2005 J. Mater. Sci. 40 5265

    [32]

    Ni H L, Zhu T J, Zhao X B 2005 Mater. Sci. Eng. B 117 119

    [33]

    Takashiri M, Tanaka S, Hagino H, Miyazaki K 2012 J. Appl. Phys. 112 084315

    [34]

    Kirkegaard P, Pederson N J, Eldrup M 1989 Riso Report M 2740, Risφ National Laboratory, DK-4000 Roskilde, Denmark

    [35]

    Zheng X J, Zhu L L, Zhou Y H, Zhang Q J 2005 Appl. Phys. Lett. 87 242101

    [36]

    Yoon S, Kwon O J, Ahn S, Kim J Y, Koo H, Bae S H, Cho J Y, Kim J S, Park C 2013 J. Electron. Mater. 42 3390

  • [1]

    Zhang F, Zhu H T, Luo J, Liang J K, Rao G H, Liu Q L 2010 Acta Phys. Sin. 59 7232 (in Chinese) [张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林 2010 物理学报 59 7232]

    [2]

    Wang Z C, Li H, Su X L, Tang X F 2011 Acta Phys. Sin. 60 027202 (in Chinese) [王作成, 李涵, 苏贤礼, 唐新峰 2011 物理学报 60 027202]

    [3]

    Huo F P, Wu R G, Xu G Y, Niu S T 2012 Acta Phys. Sin. 61 087202 (in Chinese) [霍凤萍, 吴荣归, 徐桂英, 牛四通 2012 物理学报 61 087202]

    [4]

    Ji X, Zhang B, Tritt T M, Kolis J W, Kumbhar A 2007 J. Electron. Mater. 36 721

    [5]

    Slack G A, Tsoukala V G 1994 J. Appl. Phys. 76 1665

    [6]

    Callaway J, von Baeyer H C 1960 Phys. Rev. 120 1149

    [7]

    Klemens P G 1955 Proc. Phys. Soc. A 68 1113

    [8]

    Abeles B 1963 Phys. Rev. 131 1906

    [9]

    Pei Y Z, Morelli D T 2009 Appl. Phys. Lett. 94 122112

    [10]

    Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101

    [11]

    Yu C, Scullin M L, Huijben M, Ramesh R, Majumdar A 2008 Appl. Phys. Lett. 92 191911

    [12]

    Wang Y, Li F, Xu L X, Sui Y, Wang X J, Su W H, Liu X Y 2011 Inorg. Chem. 50 4412

    [13]

    Plirdpring T, Kurosaki K, Kosuga A, Ishimaru M, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2011 Appl. Phys. Lett. 98 172104

    [14]

    Zhu G H, Lan Y C, Wang H, Joshi G, Hao Q, Chen G, Ren Z F 2011 Phys. Rev. B 83 115201

    [15]

    Wiedigen S, Kramer T, Feuchter M, Knorr I, Nee N, Hoffmann J, Kamlah M, Volkert C A, Jooss C 2012 Appl. Phys. Lett. 100 061904

    [16]

    Levander A X, Tong T, Yu K M, Suh J, Fu D, Zhang R, Lu H, Schaff W J, Dubon O, Walukiewicz W, Cahill D G, Wu J 2011 Appl. Phys. Lett. 98 012108

    [17]

    Liu Y, Zhao L D, Liu Y C, Lan J L, Xu W, Li F, Zhang B P, Berardan D, Dragoe N, Lin Y H, Nan C W, Li J F, Zhu H M 2011 J. Am. Chem. Soc. 133 20112

    [18]

    Kato A, Yagi T, Fukusako N 2009 J. Phys.: Condens. Matter 21 205801

    [19]

    Park C H, Kim Y S 2010 Phys. Rev. B 81 085206

    [20]

    Hashibon A, Elsässer C 2011 Phys. Rev. B 84 144117

    [21]

    Alam H, Ramakrishna S 2013 Nano Energy 2 190

    [22]

    Son J S, Choi M K, Han M K, Park K, Kim J Y, Lim S J, Oh M, Kuk Y, Park C, Kim S J, Hyeon T 2012 Nano Lett. 12 640

    [23]

    Fu J P, Song S Y, Zhang X G, Cao F, Zhou L, Li X Y, Zhang H J 2012 Crys. Eng. Comm. 14 2159

    [24]

    Wang X Z, Yang Y M, Zhu L L 2011 J. Appl. Phys. 110 024312

    [25]

    Termentzidis K, Pokropivny A, Woda M, Xiong S Y, Chumakov Y, Cortona, Volz S 2012 J. Phys.: Conference Series 395 012114

    [26]

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Hubei Science and Technology Press) pp18-19 (in Chinese) [王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (湖北科学技术出版社)第18–19页]

    [27]

    Dutta S, Chattopadhyay S, Jana D 2006 J. Appl. Phys. 100 114328

    [28]

    Chakrabarti M, Dutta S, Chattapadhyay S, Sarkar A, Sanyal D, Chakrabarti A 2004 Nanotechnology 15 1792

    [29]

    Tuomisto F, Ranki V, Saarinen K, Look D C 2003 Phys. Rev. Lett. 91 205502

    [30]

    Dutta S, Chakrabarti M, Chattopadhyay S, Jana D, Sanyal D, Sarkar A 2005 J. Appl. Phys. 98 053513

    [31]

    Chakrabarti M, Bhowmick D, Sarkar A, Chattopadhyay S, Dechoudhury S, Sanyal, Chakrabarti A 2005 J. Mater. Sci. 40 5265

    [32]

    Ni H L, Zhu T J, Zhao X B 2005 Mater. Sci. Eng. B 117 119

    [33]

    Takashiri M, Tanaka S, Hagino H, Miyazaki K 2012 J. Appl. Phys. 112 084315

    [34]

    Kirkegaard P, Pederson N J, Eldrup M 1989 Riso Report M 2740, Risφ National Laboratory, DK-4000 Roskilde, Denmark

    [35]

    Zheng X J, Zhu L L, Zhou Y H, Zhang Q J 2005 Appl. Phys. Lett. 87 242101

    [36]

    Yoon S, Kwon O J, Ahn S, Kim J Y, Koo H, Bae S H, Cho J Y, Kim J S, Park C 2013 J. Electron. Mater. 42 3390

计量
  • 文章访问数:  2054
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-07
  • 修回日期:  2015-06-14
  • 刊出日期:  2015-10-05

用正电子湮没研究纳米碲化铋的缺陷及其对热导率的影响

  • 1. 武汉大学物理学院, 湖北核固体物理重点实验室, 武汉 430072
    基金项目: 

    国家自然科学基金(批准号: 11275143, 11305117)资助的课题.

摘要: 利用水热法合成了Bi2Te3纳米粉末, 并在300500 ℃的温度范围内对其进行等离子烧结. X射线衍射测试表明制得的Bi2Te3粉末是单相的. 对于300500 ℃范围内烧结的样品, 扫描电子显微镜观察发现随着烧结温度的升高样品颗粒明显增大, 但是根据X射线衍射峰的宽度计算得到的样品晶粒大小并没有明显的变化. 正电子湮没寿命测试结果表明, 所有的样品中均存在空位型缺陷, 而这些缺陷很可能存在于晶界处. 正电子平均寿命随着烧结温度的升高而单调下降, 说明较高的烧结温度导致了空位型缺陷浓度的降低. 另外, 随着烧结温度从300 ℃升高到500 ℃, 样品的热导率从0.3 Wm-1K-1升高到了2.4 Wm-1K-1, 这表明在纳米Bi2Te3中, 空位型缺陷和热导率之间存在着密切的联系.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回