-
With the rapid increase of the thermal power density of microelectronic devices and circuits, controlling its temperature has become an urgent need for the development and application of the electronic industry. By virtue of the ultrahigh thermal conductivity of graphene, developing high-performance graphene-based composite thermal interface materials has attracted much research attention and become one of hot research topics. The understanding of phonon transport mechanism in graphene-based composites at atomic scale can be helpful to enhance the heat conductive capability of composites systems. In this review, focused on graphene-based thermal interfaces materials, the heat conduction mechanism and the regulating strategy are introduced on both the internal thermal resistance and interfacial thermal resistance. Finally, the reseach progress and opportunities for future studies are also summarized.
-
Keywords:
- thermal interfacial material /
- graphene composite /
- thermal conductivity /
- phonon coupling
[1] 孙蓉 2019 集成技术 8 1Google Scholar
Sun R 2019 J. Ind. Inf. Integration 8 1Google Scholar
[2] Yu W, Liu C, Qiu L, Zhang P, Ma W, Yue Y, Xie H, Larkin L S 2018 Eng. Sci. 2 1
[3] Liu C, Chen M, Yu W, He Y 2018 ES Energy Environ. 2 31
[4] Shahil K M F, Balandin A A 2012 Solid State Commun. 152 1331Google Scholar
[5] Huang C, Qian X, Yang R 2018 Mater. Sci. Eng. R Rep. 132 1Google Scholar
[6] Xu Y, Wang X, Zhou J, Song B, Jiang Z, Lee E M Y, Huberman S, Gleason K K, Chen G 2018 Sci. Adv. 4 eaar3031Google Scholar
[7] Xi Q, Zhong J, He J, Xu X, Nakayama T, Wang Y, Liu J, Zhou J, Li B 2020 Chin. Phys. Lett. 37 104401Google Scholar
[8] Yu X, Ma D, Deng C, Wan X, An M, Meng H, Li X, Huang X, Yang N 2021 Chin. Phy. Lett. 38 014401Google Scholar
[9] Chang Z, Yuan K, Sun Z, Zhang X, Gao Y, Gong X, Tang D 2021 Chin. Phys. B 30 034401Google Scholar
[10] Ma D, Li X, Zhang L 2020 Chin. Phys. B 29 126502Google Scholar
[11] 吴祥水, 汤雯婷, 徐象繁 2020 物理学报 69 196602Google Scholar
Wu X S, Tang W T, Xu X F 2020 Acta Phys. Sin. 69 196602Google Scholar
[12] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar
[13] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B, Ozyilmaz B 2014 Nat. Commun. 5 3689Google Scholar
[14] Li P, Liu Y, Shi S, Xu Z, Ma W, Wang Z, Liu S, Gao C 2020 Adv. Funct. Mater. 30 2006584Google Scholar
[15] Gao J, Xie D, Wang X, Zhang X, Yue Y 2020 Appl. Phys. Lett. 117 251901Google Scholar
[16] Xu X, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704Google Scholar
[17] Xu X, Chen J, Zhou J, Li B 2018 Adv. Mater. 30 e1705544Google Scholar
[18] Lewis J S, Perrier T, Barani Z, Kargar F, Balandin A A 2021 Nanotechnology 32 142003Google Scholar
[19] Yan Q, Alam F E, Gao J, Dai W, Tan X, Lv L, Wang J, Zhang H, Chen D, Nishimura K, Wang L, Yu J, Lu J, Sun R, Xiang R, Maruyama S, Zhang H, Wu S, Jiang N, Lin CT 2021 Adv. Funct. Mater. 31 2104062Google Scholar
[20] Huang X, Zhi C, Lin Y, Bao H, Wu G, Jiang P, Mai Y-W 2020 Mat. Sci. Eng. R 142 100577Google Scholar
[21] An M, Wang H, Yuan Y, Chen D, Ma W, Sharshir S W, Zheng Z, Zhao Y, Zhang X 2022 Surf. Interfaces 28 101690Google Scholar
[22] Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617Google Scholar
[23] Zhou Y, Wu S, Long Y, Zhu P, Wu F, Liu F, Murugadoss V, Winchester W, Nautiyal A, Wang Z, Guo Z 2020 ES Mater. Manuf. 7 4
[24] Deng C, Huang Y, An M, Yang N 2021 Mater. Today Phys. 16 100305Google Scholar
[25] 潘东楷, 宗志成, 杨诺 2022 物理学报 71 086302Google Scholar
Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar
[26] An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B, Yang N 2017 Nano Lett. 17 5805Google Scholar
[27] Vallabhaneni A K, Singh D, Bao H, Murthy J, Ruan X 2016 Phys. Rev. B 93 125432Google Scholar
[28] Feng T, Yao W, Wang Z, Shi J, Li C, Cao B, Ruan X 2017 Phys. Rev. B 95 195202Google Scholar
[29] Sullivan S, Vallabhaneni A, Kholmanov I, Ruan X, Murthy J, Shi L 2017 Nano lett. 17 2049Google Scholar
[30] Feng T, Yao W, Wang Z, Shi J, Li C, Cao B, Ruan X 2017 Phys. Rev. B 95 195202
[31] Feng T, Zhong Y, Shi J, Ruan X 2019 Phys. Rev. B 99 045301Google Scholar
[32] Chen J, Xu X, Zhou J, Li B 2022 Rev. Mod. Phys. 94 025002Google Scholar
[33] Huang Y, Feng W, Yu X, Deng C, Yang N 2020 Chin. Phys. B 29 126303Google Scholar
[34] Giri A, Hopkins P E 2020 Adv. Funct. Mater. 30 1903857Google Scholar
[35] Lin S, Buehler M J 2013 Nanotechnology 24 165702Google Scholar
[36] Wang M, Galpaya D, Lai Z B, Xu Y, Yan C 2014 Int. J. Smart Nano Mat. 5 123Google Scholar
[37] Zhang L, Liu L 2017 ACS Appl. Mater. Interfaces 9 28949Google Scholar
[38] Wang M, Hu N, Zhou L, Yan C 2015 Carbon 85 414Google Scholar
[39] Wang Y, Zhan H F, Xiang Y, Yang C, Wang C M, Zhang Y Y 2015 J. Phys. Chem. C 119 12731Google Scholar
[40] Liu C, Yu W, Chen C, Xie H, Cao B 2020 Inter. J. Heat Mass Trans. 163 120393Google Scholar
[41] Wei X, Zhang T, Luo T 2017 ACS Energy Lett. 2 2283Google Scholar
[42] Sun F, Zhang T, Jobbins M M, Guo Z, Zhang X, Zheng Z, Tang D, Ptasinska S, Luo T 2014 Adv. Mater. 26 6093Google Scholar
[43] Qiu L, Guo P, Kong Q, Tan C W, Liang K, Wei J, Tey J N, Feng Y, Zhang X, Tay B K 2019 Carbon 145 725Google Scholar
[44] Zhang Y, Ma D, Zang Y, Wang X, Yang N 2018 Front. Energy Res. 6 48Google Scholar
[45] Xiong Y, Yu X, Huang Y, Yang J, Li L, Yang N, Xu D 2019 Mater. Today Phys. 11 100139Google Scholar
[46] Ma D, Zhang G, Zhang L 2020 J. Phys. DAppl. Phys. 53 434001Google Scholar
[47] Hao Q, Garg J 2021 ES Mater. Manuf. 14 36
[48] Wang S, Xu D, Gurunathan R, Snyder G J, Hao Q 2020 J. Mater. 6 248
[49] Xu D, Hanus R, Xiao Y, Wang S, Snyder G J, Hao Q 2018 Mater. Today Phys. 6 53Google Scholar
[50] Ma D, Zhao Y, Zhang L 2021 J. Appl. Phys. 129 175302Google Scholar
[51] Xiong G, Wang J-S, Ma D, Zhang L 2020 EPL 128 54007Google Scholar
[52] Zhou Y, Zhang X, Hu M 2016 Nanoscale 8 1994Google Scholar
[53] Rastgarkafshgarkolaei R, Zhang J, Polanco C A, Le N Q, Ghosh A W, Norris P M 2019 Nanoscale 11 6254Google Scholar
[54] Yang L, Wan X, Ma D, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305Google Scholar
[55] Wan X, Feng W, Wang Y, Wang H, Zhang X, Deng C, Yang N 2019 Nano Lett. 19 3387Google Scholar
[56] Wan X, Ma D, Pan D, Yang L, Yang N 2021 Mater. Today Phys. 20 100445Google Scholar
[57] Ju S, Shiga T, Feng L, Hou Z, Tsuda K, Shiomi J 2017 Phys. Rev. X 7 021024
[58] Roy Chowdhury P, Reynolds C, Garrett A, Feng T, Adiga S P, Ruan X 2020 Nano Energy 69 104428Google Scholar
[59] Shanker A, Li C, Kim G H, Gidley D, Pipe K P, Kim J 2017 Sci. Adv. 3 e1700342Google Scholar
[60] Kim G-H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P 2015 Nat. Mater. 14 295Google Scholar
[61] Zhang L, Liu L 2019 Nanoscale 11 3656Google Scholar
[62] Luo T, Lloyd J R 2012 Adv. Funct. Mater. 22 2495Google Scholar
[63] Losego M D, Grady M E, Sottos N R, Cahill D G, Braun P V 2012 Nat. Mater. 11 502Google Scholar
[64] Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J 2018 Appl. Mater. Today 12 92Google Scholar
[65] Han H, Mérabia S, Müller-Plathe F 2017 J. Phys. Chem. Lett. 8 1946Google Scholar
[66] Xiong Y, W H, Gao J, Chen W, Zhang J, Yue Y 2019 Acta Phys. Chim. Sin. 35 1150Google Scholar
[67] Shen X, Wang Z, Wu Y, Liu X, He Y B, Kim J K 2016 Nano Lett. 16 3585Google Scholar
[68] Renteria J, Legedza S, Salgado R, Balandin M, Ramirez S, Saadah M, Kargar F, Balandin A 2015 Mater. Design 88 214Google Scholar
[69] Wu X, Luo T 2014 J. Appl. Phys. 115 014901Google Scholar
[70] Mann D, Pop E, Cao J, Wang Q, Goodson K 2006 J. Phys. Chem. B 110 1502Google Scholar
[71] Maassen J, Lundstrom M 2016 J. Appl. Phys. 119 095102Google Scholar
[72] Lu Z, Shi J, Ruan X 2019 J. Appl. Phys. 125 085107Google Scholar
[73] Zhong J, Xi Q, Wang Z, Nakayama T, Li X, Liu J, Zhou J 2021 J. App. Phys. 129 195102Google Scholar
[74] Guo Y, Zhang Z, Bescond M, Xiong S, Nomura M, Volz S 2021 Phys. Rev. B 103 174306Google Scholar
[75] Cheng Z, Li R, Yan X, Jernigan G, Shi J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X, Luo T, Graham S 2021 Nat. Commun. 12 6901Google Scholar
[76] Mortazavi B, Podryabinkin E V, Roche S, Rabczuk T, Zhuang X, Shapeev A V 2020 Mater. Horiz. 7 2359Google Scholar
-
图 2 (a) 石墨烯基复合体系中石墨烯面内振动(黑色箭头)和面外振动(红色箭头); (b) 复合体系中石墨烯内非平衡声子群温度; (c) 复合体系中界面石墨烯的面内振动(黑色箭头)和面外振动(红色箭头); (d) 界面石墨烯的非平衡声子温度
Fig. 2. (a), (c) The schematic diagram of two types of graphene-based composites where in-plane (out-of-plane) phonon group is denoted as black arrow (red arrow); (b), (d) the temperature distribution of in-plane phonon group, out-of-plane phonon group in graphene and polymer.
图 3 (a) 面内异质结构和(c)范德瓦耳斯界面原子模型; (b) 面内异质界面和(d)范德瓦耳斯界面在沿热流方向的温度分布, 其中左边系统声子群A和B均对系统导热有贡献且存在非平衡现象, 右边系统仅有一种声子群
Fig. 3. (a) The atomic structure models of in-plane heterointerface and (c) van der Waals heterointerfaces;the temperature distribution of phonon group A(b), TA, left, phonon group B(d), TB, left in the left region and phonon group Tright in right region.
-
[1] 孙蓉 2019 集成技术 8 1Google Scholar
Sun R 2019 J. Ind. Inf. Integration 8 1Google Scholar
[2] Yu W, Liu C, Qiu L, Zhang P, Ma W, Yue Y, Xie H, Larkin L S 2018 Eng. Sci. 2 1
[3] Liu C, Chen M, Yu W, He Y 2018 ES Energy Environ. 2 31
[4] Shahil K M F, Balandin A A 2012 Solid State Commun. 152 1331Google Scholar
[5] Huang C, Qian X, Yang R 2018 Mater. Sci. Eng. R Rep. 132 1Google Scholar
[6] Xu Y, Wang X, Zhou J, Song B, Jiang Z, Lee E M Y, Huberman S, Gleason K K, Chen G 2018 Sci. Adv. 4 eaar3031Google Scholar
[7] Xi Q, Zhong J, He J, Xu X, Nakayama T, Wang Y, Liu J, Zhou J, Li B 2020 Chin. Phys. Lett. 37 104401Google Scholar
[8] Yu X, Ma D, Deng C, Wan X, An M, Meng H, Li X, Huang X, Yang N 2021 Chin. Phy. Lett. 38 014401Google Scholar
[9] Chang Z, Yuan K, Sun Z, Zhang X, Gao Y, Gong X, Tang D 2021 Chin. Phys. B 30 034401Google Scholar
[10] Ma D, Li X, Zhang L 2020 Chin. Phys. B 29 126502Google Scholar
[11] 吴祥水, 汤雯婷, 徐象繁 2020 物理学报 69 196602Google Scholar
Wu X S, Tang W T, Xu X F 2020 Acta Phys. Sin. 69 196602Google Scholar
[12] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar
[13] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B, Ozyilmaz B 2014 Nat. Commun. 5 3689Google Scholar
[14] Li P, Liu Y, Shi S, Xu Z, Ma W, Wang Z, Liu S, Gao C 2020 Adv. Funct. Mater. 30 2006584Google Scholar
[15] Gao J, Xie D, Wang X, Zhang X, Yue Y 2020 Appl. Phys. Lett. 117 251901Google Scholar
[16] Xu X, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704Google Scholar
[17] Xu X, Chen J, Zhou J, Li B 2018 Adv. Mater. 30 e1705544Google Scholar
[18] Lewis J S, Perrier T, Barani Z, Kargar F, Balandin A A 2021 Nanotechnology 32 142003Google Scholar
[19] Yan Q, Alam F E, Gao J, Dai W, Tan X, Lv L, Wang J, Zhang H, Chen D, Nishimura K, Wang L, Yu J, Lu J, Sun R, Xiang R, Maruyama S, Zhang H, Wu S, Jiang N, Lin CT 2021 Adv. Funct. Mater. 31 2104062Google Scholar
[20] Huang X, Zhi C, Lin Y, Bao H, Wu G, Jiang P, Mai Y-W 2020 Mat. Sci. Eng. R 142 100577Google Scholar
[21] An M, Wang H, Yuan Y, Chen D, Ma W, Sharshir S W, Zheng Z, Zhao Y, Zhang X 2022 Surf. Interfaces 28 101690Google Scholar
[22] Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617Google Scholar
[23] Zhou Y, Wu S, Long Y, Zhu P, Wu F, Liu F, Murugadoss V, Winchester W, Nautiyal A, Wang Z, Guo Z 2020 ES Mater. Manuf. 7 4
[24] Deng C, Huang Y, An M, Yang N 2021 Mater. Today Phys. 16 100305Google Scholar
[25] 潘东楷, 宗志成, 杨诺 2022 物理学报 71 086302Google Scholar
Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar
[26] An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B, Yang N 2017 Nano Lett. 17 5805Google Scholar
[27] Vallabhaneni A K, Singh D, Bao H, Murthy J, Ruan X 2016 Phys. Rev. B 93 125432Google Scholar
[28] Feng T, Yao W, Wang Z, Shi J, Li C, Cao B, Ruan X 2017 Phys. Rev. B 95 195202Google Scholar
[29] Sullivan S, Vallabhaneni A, Kholmanov I, Ruan X, Murthy J, Shi L 2017 Nano lett. 17 2049Google Scholar
[30] Feng T, Yao W, Wang Z, Shi J, Li C, Cao B, Ruan X 2017 Phys. Rev. B 95 195202
[31] Feng T, Zhong Y, Shi J, Ruan X 2019 Phys. Rev. B 99 045301Google Scholar
[32] Chen J, Xu X, Zhou J, Li B 2022 Rev. Mod. Phys. 94 025002Google Scholar
[33] Huang Y, Feng W, Yu X, Deng C, Yang N 2020 Chin. Phys. B 29 126303Google Scholar
[34] Giri A, Hopkins P E 2020 Adv. Funct. Mater. 30 1903857Google Scholar
[35] Lin S, Buehler M J 2013 Nanotechnology 24 165702Google Scholar
[36] Wang M, Galpaya D, Lai Z B, Xu Y, Yan C 2014 Int. J. Smart Nano Mat. 5 123Google Scholar
[37] Zhang L, Liu L 2017 ACS Appl. Mater. Interfaces 9 28949Google Scholar
[38] Wang M, Hu N, Zhou L, Yan C 2015 Carbon 85 414Google Scholar
[39] Wang Y, Zhan H F, Xiang Y, Yang C, Wang C M, Zhang Y Y 2015 J. Phys. Chem. C 119 12731Google Scholar
[40] Liu C, Yu W, Chen C, Xie H, Cao B 2020 Inter. J. Heat Mass Trans. 163 120393Google Scholar
[41] Wei X, Zhang T, Luo T 2017 ACS Energy Lett. 2 2283Google Scholar
[42] Sun F, Zhang T, Jobbins M M, Guo Z, Zhang X, Zheng Z, Tang D, Ptasinska S, Luo T 2014 Adv. Mater. 26 6093Google Scholar
[43] Qiu L, Guo P, Kong Q, Tan C W, Liang K, Wei J, Tey J N, Feng Y, Zhang X, Tay B K 2019 Carbon 145 725Google Scholar
[44] Zhang Y, Ma D, Zang Y, Wang X, Yang N 2018 Front. Energy Res. 6 48Google Scholar
[45] Xiong Y, Yu X, Huang Y, Yang J, Li L, Yang N, Xu D 2019 Mater. Today Phys. 11 100139Google Scholar
[46] Ma D, Zhang G, Zhang L 2020 J. Phys. DAppl. Phys. 53 434001Google Scholar
[47] Hao Q, Garg J 2021 ES Mater. Manuf. 14 36
[48] Wang S, Xu D, Gurunathan R, Snyder G J, Hao Q 2020 J. Mater. 6 248
[49] Xu D, Hanus R, Xiao Y, Wang S, Snyder G J, Hao Q 2018 Mater. Today Phys. 6 53Google Scholar
[50] Ma D, Zhao Y, Zhang L 2021 J. Appl. Phys. 129 175302Google Scholar
[51] Xiong G, Wang J-S, Ma D, Zhang L 2020 EPL 128 54007Google Scholar
[52] Zhou Y, Zhang X, Hu M 2016 Nanoscale 8 1994Google Scholar
[53] Rastgarkafshgarkolaei R, Zhang J, Polanco C A, Le N Q, Ghosh A W, Norris P M 2019 Nanoscale 11 6254Google Scholar
[54] Yang L, Wan X, Ma D, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305Google Scholar
[55] Wan X, Feng W, Wang Y, Wang H, Zhang X, Deng C, Yang N 2019 Nano Lett. 19 3387Google Scholar
[56] Wan X, Ma D, Pan D, Yang L, Yang N 2021 Mater. Today Phys. 20 100445Google Scholar
[57] Ju S, Shiga T, Feng L, Hou Z, Tsuda K, Shiomi J 2017 Phys. Rev. X 7 021024
[58] Roy Chowdhury P, Reynolds C, Garrett A, Feng T, Adiga S P, Ruan X 2020 Nano Energy 69 104428Google Scholar
[59] Shanker A, Li C, Kim G H, Gidley D, Pipe K P, Kim J 2017 Sci. Adv. 3 e1700342Google Scholar
[60] Kim G-H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P 2015 Nat. Mater. 14 295Google Scholar
[61] Zhang L, Liu L 2019 Nanoscale 11 3656Google Scholar
[62] Luo T, Lloyd J R 2012 Adv. Funct. Mater. 22 2495Google Scholar
[63] Losego M D, Grady M E, Sottos N R, Cahill D G, Braun P V 2012 Nat. Mater. 11 502Google Scholar
[64] Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J 2018 Appl. Mater. Today 12 92Google Scholar
[65] Han H, Mérabia S, Müller-Plathe F 2017 J. Phys. Chem. Lett. 8 1946Google Scholar
[66] Xiong Y, W H, Gao J, Chen W, Zhang J, Yue Y 2019 Acta Phys. Chim. Sin. 35 1150Google Scholar
[67] Shen X, Wang Z, Wu Y, Liu X, He Y B, Kim J K 2016 Nano Lett. 16 3585Google Scholar
[68] Renteria J, Legedza S, Salgado R, Balandin M, Ramirez S, Saadah M, Kargar F, Balandin A 2015 Mater. Design 88 214Google Scholar
[69] Wu X, Luo T 2014 J. Appl. Phys. 115 014901Google Scholar
[70] Mann D, Pop E, Cao J, Wang Q, Goodson K 2006 J. Phys. Chem. B 110 1502Google Scholar
[71] Maassen J, Lundstrom M 2016 J. Appl. Phys. 119 095102Google Scholar
[72] Lu Z, Shi J, Ruan X 2019 J. Appl. Phys. 125 085107Google Scholar
[73] Zhong J, Xi Q, Wang Z, Nakayama T, Li X, Liu J, Zhou J 2021 J. App. Phys. 129 195102Google Scholar
[74] Guo Y, Zhang Z, Bescond M, Xiong S, Nomura M, Volz S 2021 Phys. Rev. B 103 174306Google Scholar
[75] Cheng Z, Li R, Yan X, Jernigan G, Shi J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X, Luo T, Graham S 2021 Nat. Commun. 12 6901Google Scholar
[76] Mortazavi B, Podryabinkin E V, Roche S, Rabczuk T, Zhuang X, Shapeev A V 2020 Mater. Horiz. 7 2359Google Scholar
计量
- 文章访问数: 7920
- PDF下载量: 296
- 被引次数: 0