搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶粒尺寸对纳米多晶铁变形机制影响的模拟研究

王鹏 徐建刚 张云光 宋海洋

引用本文:
Citation:

晶粒尺寸对纳米多晶铁变形机制影响的模拟研究

王鹏, 徐建刚, 张云光, 宋海洋

Molecular dynamics simulation of effect of grain on mechanical properties of nano-polycrystal -Fe

Wang Peng, Xu Jian-Gang, Zhang Yun-Guang, Song Hai-Yang
PDF
导出引用
  • 利用分子动力学模拟方法研究了拉伸荷载作用下晶粒尺寸对纳米多晶铁变形机制的影响.研究结果表明杨氏模量随着晶粒尺寸的减小而减小.当晶粒尺寸小于15.50 nm时,纳米多晶铁的峰值应力和晶粒尺寸之间遵循反常的Hall-Petch关系,此时晶粒旋转和晶界迁移是其塑性变形的主要变形机制;随着晶粒尺寸的增大,变形孪晶和位错滑移在其塑性变形过程中逐渐占据主导地位.裂纹的形成是导致大晶粒尺寸模型力学性能降低的主要因素.纳米多晶铁在塑性变形中会出现孪晶界的迁移和退孪晶现象.此外还研究了温度对纳米多晶铁变形机制的影响.
    The nanocrystalline metals are widely investigated due to their unique mechanical properties. Currently, the available studies about deformation mechanisms of metals mainly focus on face-centered cubic metals such as Ni, Cu and Au. However, the body-centered cubic metals are still very limited, despite their industrial importance. Here, we investigate the effects of grain size and temperature on the mechanical behavior of nano-polycrystal -Fe under uniaxial tensile loading by using molecular dynamics (MD) simulation. The models of nanocrystalline -Fe with the grain sizes of 3.95, 6.80, 9.70, 12.50, 15.50, 17.50, 20.70 and 26.00 nm are geometrically created in three dimensions by using Voronoi construction, and these models are relaxed to reach an equilibrium state. Then, each of them has a strain of 0.001 along the Z-direction in each step, keeping zero pressure in the X- and Y-directions until the strain increases up to 0.2. A 1.0 fs time step is used in all of the MD simulations. Based on the data output, the stress-strain curves at different grain sizes are obtained. The results indicate that the peak stresses of nano-polycrystal -Fe decrease with the decrease of grain size, exhibiting a breakdown in the Hall-Petch relation when the grain size is smaller than a critical size. The major deformation mechanism is found to change from dislocation slips and twinning-mediated plasticity in a model with a larger grain size to grain boundary sliding in a model with a smaller grain size. It should be noted that twinning is formed by the emission of 1/6111 partial dislocations along the {112} slip plane. The results show that crack formation during tension is a cause of reducing the flow stress of nano-polycrystal -Fe with a large grain size and that the Young's modulus of nano-polycrystal -Fe decreases with the grain size decreasing. The main reason for the crack nucleation is here that grain boundaries perpendicular to the loading direction bear higher stress and the twin band interacts with grain boundaries at a larger grain size, causing the stress to concentrate at the intersections of grain boundaries. The results also show the detwinning behavior and migration of deformed twins in nano-polycrystal -Fe. The detwinning behavior occurs via the migration of the intersection of grain boundary and twin, and this intersection is incoherent boundary. The migration of deformed twins proceeds by repeating initiation and glide of 1/6111 partial dislocations on adjacent {112} planes. In addition, we find that the nucleation and propagation of dislocation become easier at higher temperature than at lower temperature.
      通信作者: 张云光, zygsr2010@163.com;gsfshy@sohu.com ; 宋海洋, zygsr2010@163.com;gsfshy@sohu.com
    • 基金项目: 国家自然科学基金(批准号:11572259)、教育部新世纪优秀人才支持计划(批准号:NCET-12-1046)、陕西省青年科技新星支持计划(批准号:2012KJXX-39)和陕西省国际科技合作与交流计划(批准号:2016KW-049)资助的课题.
      Corresponding author: Zhang Yun-Guang, zygsr2010@163.com;gsfshy@sohu.com ; Song Hai-Yang, zygsr2010@163.com;gsfshy@sohu.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11572259), the Program for New Century Excellent Talent in University of the Ministry of Education of China (Grant No. NCET-12-1046), the New Scientific and Technological Star of Shaanxi Province (Grant No. 2012KJXX-39), and the International Cooperation and Exchanges of Shaanxi Province (Grant No. 2016KW-049).
    [1]

    Hall E O 1951 Proc. Phys. Soc. Sect. B 64 747

    [2]

    Petch N J 1953 J. Iron Steel Inst. 174 25

    [3]

    Bazarnik P, Huang Y, Lewandowska M, Langdon T G 2015 Mater. Sci. Eng. A 626 9

    [4]

    Panin V E, Armstrong R W 2016 Phys. Mesomech. 19 35

    [5]

    Wen P, Tao G, Ren B X, Pei Z 2015 Acta Phys. Sin. 64 126201 (in Chinese)[闻鹏, 陶刚, 任保详, 裴政2015物理学报64 126201]

    [6]

    Qin X F, Sun D L, Wang T, Zhao X, Xie L, Wu Q 2015 J. Alloys. Compd. 640 497

    [7]

    Mauing K, Earthman J C, Mohamed F A 2012 Acta Mater. 60 5850

    [8]

    He X, Bai Q S, Bai J X 2016 Acta Phys. Sin. 65 116101 (in Chinese)[何欣, 白清顺, 白锦轩2016物理学报65 116101]

    [9]

    Dolgusheva E B, Trubitsin V Y 2014 Comput. Mater. Sci. 84 23

    [10]

    Lin C P, Liu X J, Rao Z H 2015 Acta Phys. Sin. 64 083601 (in Chinese)[林长鹏, 刘新健, 饶中浩2015物理学报64 083601]

    [11]

    Zhou K, Liu B, Yao Y J, Zhong K 2014 Mater. Sci. Eng. A 595 118

    [12]

    Cao R G, Deng C 2015 Scripta Mater. 94 9

    [13]

    Zhu Y X, Li Z H, Huang M S 2013 Scripta Mater. 68 663

    [14]

    Li X F, Hu W Y, Xiao S F, Huang W Q 2008 Physica E 40 3030

    [15]

    Wu D, Wang X L, Nieh T G 2014 J. Phys. D:Appl. Phys. 47 554

    [16]

    Wang S, Hashimoto N, Ohnuki S 2013 Sci. Rep. 3 2760

    [17]

    Ackland G J, Mendelev M I, Srolovitz D J, Han S, Barashev A V 2004 Phys-Condens. Mat. 16 S2629

    [18]

    Terentyev D A, Malerba L, Hou M 2007 Phys. Rev. B:Condens. Matter 75 104108

    [19]

    Ventelon L, Willaime F 2010 Philos. Mag. 90 1063

    [20]

    Faken D, Jonsson H 1994 Compos. Mater. Sci. 2 279

    [21]

    Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012

    [22]

    Song H Y, Li Y L 2012 J Appl. Phys. 111 044322

    [23]

    Zhou K, Liu B, Yao Y G, Zhong K 2014 Mater. Sci. Eng. A 615 92

    [24]

    Jeon J B, Lee B J, Chang Y W 2011 Scripta Mater. 64 494

    [25]

    Sainath G, Choudhary B K 2016 Comput. Mater. Sci. 111 406

    [26]

    Chen M Q, Quek S S, Sha Z D, Chiu C H, Pei Q X, Zhang Y W 2015 Carbon 85 135

    [27]

    Song Z, Artyukhov V I, Yakobson B I, Xu Z 2013 Nano Lett. 13 1829

    [28]

    Zhang Y F, Millett P C, Tonks M, Biner S B 2012 Acta Mater. 60 6421

    [29]

    Sainath G, Choudhary B K, JayakumarT 2015 Comput. Mater. Sci. 104 76

    [30]

    Shi Z, Singh C V 2016 Scripta Mater. 113 214

    [31]

    Wang J, Li N, Anderoglu O, Zhang X, Misra A, Huang J Y, Hirth J P 2010 Acta Mater. 58 2262

    [32]

    Ovid'ko I A, Skiba N V, Sheinerman A G 2015 Rev. Adv. Mater. Sci. 43 38

  • [1]

    Hall E O 1951 Proc. Phys. Soc. Sect. B 64 747

    [2]

    Petch N J 1953 J. Iron Steel Inst. 174 25

    [3]

    Bazarnik P, Huang Y, Lewandowska M, Langdon T G 2015 Mater. Sci. Eng. A 626 9

    [4]

    Panin V E, Armstrong R W 2016 Phys. Mesomech. 19 35

    [5]

    Wen P, Tao G, Ren B X, Pei Z 2015 Acta Phys. Sin. 64 126201 (in Chinese)[闻鹏, 陶刚, 任保详, 裴政2015物理学报64 126201]

    [6]

    Qin X F, Sun D L, Wang T, Zhao X, Xie L, Wu Q 2015 J. Alloys. Compd. 640 497

    [7]

    Mauing K, Earthman J C, Mohamed F A 2012 Acta Mater. 60 5850

    [8]

    He X, Bai Q S, Bai J X 2016 Acta Phys. Sin. 65 116101 (in Chinese)[何欣, 白清顺, 白锦轩2016物理学报65 116101]

    [9]

    Dolgusheva E B, Trubitsin V Y 2014 Comput. Mater. Sci. 84 23

    [10]

    Lin C P, Liu X J, Rao Z H 2015 Acta Phys. Sin. 64 083601 (in Chinese)[林长鹏, 刘新健, 饶中浩2015物理学报64 083601]

    [11]

    Zhou K, Liu B, Yao Y J, Zhong K 2014 Mater. Sci. Eng. A 595 118

    [12]

    Cao R G, Deng C 2015 Scripta Mater. 94 9

    [13]

    Zhu Y X, Li Z H, Huang M S 2013 Scripta Mater. 68 663

    [14]

    Li X F, Hu W Y, Xiao S F, Huang W Q 2008 Physica E 40 3030

    [15]

    Wu D, Wang X L, Nieh T G 2014 J. Phys. D:Appl. Phys. 47 554

    [16]

    Wang S, Hashimoto N, Ohnuki S 2013 Sci. Rep. 3 2760

    [17]

    Ackland G J, Mendelev M I, Srolovitz D J, Han S, Barashev A V 2004 Phys-Condens. Mat. 16 S2629

    [18]

    Terentyev D A, Malerba L, Hou M 2007 Phys. Rev. B:Condens. Matter 75 104108

    [19]

    Ventelon L, Willaime F 2010 Philos. Mag. 90 1063

    [20]

    Faken D, Jonsson H 1994 Compos. Mater. Sci. 2 279

    [21]

    Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012

    [22]

    Song H Y, Li Y L 2012 J Appl. Phys. 111 044322

    [23]

    Zhou K, Liu B, Yao Y G, Zhong K 2014 Mater. Sci. Eng. A 615 92

    [24]

    Jeon J B, Lee B J, Chang Y W 2011 Scripta Mater. 64 494

    [25]

    Sainath G, Choudhary B K 2016 Comput. Mater. Sci. 111 406

    [26]

    Chen M Q, Quek S S, Sha Z D, Chiu C H, Pei Q X, Zhang Y W 2015 Carbon 85 135

    [27]

    Song Z, Artyukhov V I, Yakobson B I, Xu Z 2013 Nano Lett. 13 1829

    [28]

    Zhang Y F, Millett P C, Tonks M, Biner S B 2012 Acta Mater. 60 6421

    [29]

    Sainath G, Choudhary B K, JayakumarT 2015 Comput. Mater. Sci. 104 76

    [30]

    Shi Z, Singh C V 2016 Scripta Mater. 113 214

    [31]

    Wang J, Li N, Anderoglu O, Zhang X, Misra A, Huang J Y, Hirth J P 2010 Acta Mater. 58 2262

    [32]

    Ovid'ko I A, Skiba N V, Sheinerman A G 2015 Rev. Adv. Mater. Sci. 43 38

  • [1] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [2] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究. 物理学报, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [3] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [4] 张硕鑫, 刘士余, 严达利, 余浅, 任海涛, 于彬, 李德军. Ta1–xHfxC和Ta1–xZrxC固溶体的结构稳定性和力学性质的第一性原理研究. 物理学报, 2021, 70(11): 117102. doi: 10.7498/aps.70.20210191
    [5] 胡雪兰, 卢睿智, 王智隆, 王亚如. Re对Ni3Al微观结构及力学性质影响的第一原理研究. 物理学报, 2020, 69(10): 107101. doi: 10.7498/aps.69.20200097
    [6] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [7] 李君, 刘立胜, 徐爽, 张金咏. 单轴压缩下Ti3B4的力学、电学性能及变形机制的第一性原理研究. 物理学报, 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [8] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [9] 刘英光, 张士兵, 韩中合, 赵豫晋. 纳晶铜晶粒尺寸对热导率的影响. 物理学报, 2016, 65(10): 104401. doi: 10.7498/aps.65.104401
    [10] 闻鹏, 陶钢, 任保祥, 裴政. 纳米多晶铜的超塑性变形机理的分子动力学探讨. 物理学报, 2015, 64(12): 126201. doi: 10.7498/aps.64.126201
    [11] 曾小波, 朱晓玲, 李德华, 陈中钧, 艾应伟. IrB和IrB2力学性质的第一性原理计算. 物理学报, 2014, 63(15): 153101. doi: 10.7498/aps.63.153101
    [12] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究. 物理学报, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [13] 刘海, 李启楷, 何远航. CL20-TNT共晶高温热解的ReaxFF/lg反应力场分子动力学模拟. 物理学报, 2013, 62(20): 208202. doi: 10.7498/aps.62.208202
    [14] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究. 物理学报, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [15] 杨卫明, 刘海顺, 敦超超, 赵玉成, 窦林名. Fe基纳米晶合金晶粒尺寸反常变化的物理机制. 物理学报, 2012, 61(10): 106802. doi: 10.7498/aps.61.106802
    [16] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [17] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [18] 何安民, 邵建立, 王裴, 秦承森. 单晶Cu(001)薄膜塑性变形的分子动力学模拟. 物理学报, 2010, 59(12): 8836-8842. doi: 10.7498/aps.59.8836
    [19] 周耐根, 周 浪. 采用纳米晶柱阵列衬底抑制失配位错形成的分子动力学模拟研究. 物理学报, 2008, 57(5): 3064-3070. doi: 10.7498/aps.57.3064
    [20] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
计量
  • 文章访问数:  6597
  • PDF下载量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-01
  • 修回日期:  2016-09-03
  • 刊出日期:  2016-12-05

/

返回文章
返回