搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

畸形波电磁散射特性分析及其特征识别标识的研究

吴庚坤 宋金宝 樊伟

引用本文:
Citation:

畸形波电磁散射特性分析及其特征识别标识的研究

吴庚坤, 宋金宝, 樊伟

Electromagnetic scattering characteristics analysis of freak waves and characteristics identification

Wu Geng-Kun, Song Jin-Bao, Fan Wei
PDF
导出引用
  • 针对弱非线性的Longuet-Higgins模型在模拟强非线性畸形波海面时所存在的问题,采用修正的相位调制法模拟一维畸形波时间、空间波面,该方法能够实现畸形波的定时定点生成,并且其波形既能保持目标谱的频谱结构,又能较大程度地满足波浪序列的统计特性.同时,基于改进的双尺度(TSM)法及时域有限差分法建立畸形波的电磁散射模型,经过相对平均偏差和均方根偏差误差分析后,基于TSM法研究分析了畸形波及其背景海面波的归一化雷达散射截面(NRCS)的计算结果.实验表明,合成孔径雷达成像中畸形波的NRCS比背景波要小,即畸形波的合成孔径雷达图像成像比背景波要灰暗,因此可以将NRCS作为畸形波的特征识别标识.通过分析研究不同极化方式、入射角、入射频率条件下畸形波与背景波面的电磁散射特性实验数据得出:当二者的NRCS差值大于-11.8 dB及以上时,即认为产生畸形波,这为实际的工程应用提供了参照标准.
    Based on the Longuet-Higgins wave model theory, a modified phase modulation method of simulating freak waves is improved in this paper. The method can generate freak waves at assigned time and place, and their waveforms can not only maintain the frequency spectrum structure of the target spectrum and also satisfy the wave series statistics to a great extent. Then, the electromagnetic backscattering model of freak and background wave is established by the finite difference time domain method and the two-scale method. After averaging relative deviation and analyzing the error of the root mean square deviation within the measurement uncertainties, considering the computational efficiency, we use the two-scale model method to calculate the electromagnetic scattering coefficient of freak wave. Numerical results show that the normalized radar cross section (NRCS) of freak wave is much smaller than that of background wave. On the other hand, we analyze the electromagnetic scattering properties of freak waves under the different polarization modes, incident angles and incident frequencies. We find that in the condition of grazing incidence, the backscatter coefficient of freak wave increases with the increase of the incident frequency, but the increase amplitude is reduced, which meets the rough surface scattering theory. When the incident frequency is fixed and the incident〉is small, the backscatter coefficient calculation results of freak wave are similar under the condition of different polarizations VV's and HH's, but the backscatter coefficient of freak wave decreases obviously with the increase of incident angle, which is caused by the radar electromagnetic wave that is parallel to the sea surface and contacts it gradually. In addition, we find that the backscatter coefficient calculation result of freak waves under the VV polarization is much higher than under HH polarization from the two groups of experimental figures. According to the result of datum analysis, a conclusion is drawn that we can determine where the freak wave is when the NRCS difference of synthetic aperture radar (SAR) image is smaller than -11.8 dB. In the practical engineering application, the characteristic parameters are difficult to observe, while the difference in electromagnetic scattering coefficient between freak wave and background wave can be calculated from the SAR image of sea surface. This conclusion provides a reference standard for predicting the freak waves in engineering application, through which we can calculate the characteristic parameters of freak wave, determine its position, and study the electromagnetic scattering characteristics under the different polarization modes, incident angles and incident frequencies in future researches.
      通信作者: 樊伟, fanwei@zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:41576013)、国家高技术研究发展计划(批准号:2013AA122803)和国家重点研发计划(批准号:2016YFC1401404)资助的课题.
      Corresponding author: Fan Wei, fanwei@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.41576013),the National High Technology Research and Development Program of China (Grant No.2013AA122803),and the National Key R&D Plan,China (Grant No.2016YFC1401404).
    [1]

    Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean (Berlin:Deblik)

    [2]

    Didenkulova I I, Slunyaev A V, Pelinovsky E N, et al. 2006 Natural Hazards and Earth System Sciences 6 1007

    [3]

    Kharif C, Pelinovsky E 2003 Europ. J. Mech. 22 603

    [4]

    Kim N, Kim C H 2003 Int. J. Offshore and Polar Engineering 13 38

    [5]

    Pei Y G, Zhang N C, Zhang Y Q 2007 Acta Oceanol. Sin. 29 172 (in Chinese)[裴玉国, 张宁川, 张运秋 2007 海洋学报 29 172]

    [6]

    Pei Y G, Zhang N C, Zhang Y Q 2007 China Ocean Engineer. 21 515

    [7]

    Huang G X 2002 Ph. D. Dissertation (Dalian:Dalian University of Technology) (in Chinese)[黄国兴 2002 博士学位论文 (大连:大连理工大学)]

    [8]

    Liu X X, Zhang N C, Pei Y G, Zhang Y Q 2007 Numerical Simulation of Freak Waves in Three-Dimensional Wave Field (Beijing:China Ocean Press) pp908-914 (in Chinese)[刘晓霞, 张宁川, 裴玉国, 张运秋 2007 中国环境资源与水利水电工程 (北京:海洋出版社) 第908–914页]

    [9]

    Zhao X Z, Sun Z C, Liang S X 2009 China Ocean Engineer. 23 429

    [10]

    Liu Z Q, Zhang N C, Yu Y X 2011 Acta Oceanol. Sin. 30 19

    [11]

    Zhang Y Q, Zhang N C 2007 Acta Oceanol. Sin. 26 116

    [12]

    Zhang Y Q, Zhang N C, Pei Y G 2007 China Ocean Engineer. 21 207

    [13]

    Onorato M, Osborne A R, Serio M 2004 Phys. Rev. E 70 67302

    [14]

    Longuet-Higgins M S 1952 J. Marine Res. 11 245

    [15]

    Wu G K, Ji G R, Ji T T, Ren H X 2014 Acta Phys. Sin. 63 134203 (in Chinese)[吴庚坤, 姬光荣, 姬婷婷, 任红霞 2014 物理学报 63 134203]

    [16]

    Guo L X, Wang Y H, Wu Z S 2005 Acta Phys. Sin. 54 5130 (in Chinese)[郭立新, 王运华, 吴振森 2005 物理学报 54 5130]

    [17]

    Yang J L, Guo L X, Wan J W 2007 Acta Phys. Sin. 56 2106 (in Chinese)[杨俊岭, 郭立新, 万建伟 2007 物理学报 56 2106]

    [18]

    Ulaby F 1982 Microwave Remote Sensing (Vol. 2) (London:Addison-Wesbey Publishing)

    [19]

    Wang Y H, Guo L X, Wu Z S 2006 Acta Phys. Sin. 55 209 (in Chinese)[王运 华, 郭立新, 吴振森 2006 物理学报55 209]

    [20]

    Zhang Y D 2004 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese)[张 延冬 2004 博士学位论文 (西安:西安电子科技大学)]

    [21]

    Vladimir K, Daniele H 2003 J. Geophys. Res. 108 8054

    [22]

    Xie T, He C, William P, Kuang H L 2010 Chin. Phys. B 19 024101

    [23]

    Xu D L, Yu D Y 2001 Theory of Random Waves (Beijing:Higher Education Press) pp200-204 (in Chinese)[徐德伦, 于定勇 2001 随机海浪理论(北京:高 等教育出版社)第200–215页]

    [24]

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Xi'an:Xidian University Press) (in Chinese)[葛德彪, 闫 玉波 2005 电磁波时域有限差分方法(西安:西安电子科技大学出版社)]

  • [1]

    Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean (Berlin:Deblik)

    [2]

    Didenkulova I I, Slunyaev A V, Pelinovsky E N, et al. 2006 Natural Hazards and Earth System Sciences 6 1007

    [3]

    Kharif C, Pelinovsky E 2003 Europ. J. Mech. 22 603

    [4]

    Kim N, Kim C H 2003 Int. J. Offshore and Polar Engineering 13 38

    [5]

    Pei Y G, Zhang N C, Zhang Y Q 2007 Acta Oceanol. Sin. 29 172 (in Chinese)[裴玉国, 张宁川, 张运秋 2007 海洋学报 29 172]

    [6]

    Pei Y G, Zhang N C, Zhang Y Q 2007 China Ocean Engineer. 21 515

    [7]

    Huang G X 2002 Ph. D. Dissertation (Dalian:Dalian University of Technology) (in Chinese)[黄国兴 2002 博士学位论文 (大连:大连理工大学)]

    [8]

    Liu X X, Zhang N C, Pei Y G, Zhang Y Q 2007 Numerical Simulation of Freak Waves in Three-Dimensional Wave Field (Beijing:China Ocean Press) pp908-914 (in Chinese)[刘晓霞, 张宁川, 裴玉国, 张运秋 2007 中国环境资源与水利水电工程 (北京:海洋出版社) 第908–914页]

    [9]

    Zhao X Z, Sun Z C, Liang S X 2009 China Ocean Engineer. 23 429

    [10]

    Liu Z Q, Zhang N C, Yu Y X 2011 Acta Oceanol. Sin. 30 19

    [11]

    Zhang Y Q, Zhang N C 2007 Acta Oceanol. Sin. 26 116

    [12]

    Zhang Y Q, Zhang N C, Pei Y G 2007 China Ocean Engineer. 21 207

    [13]

    Onorato M, Osborne A R, Serio M 2004 Phys. Rev. E 70 67302

    [14]

    Longuet-Higgins M S 1952 J. Marine Res. 11 245

    [15]

    Wu G K, Ji G R, Ji T T, Ren H X 2014 Acta Phys. Sin. 63 134203 (in Chinese)[吴庚坤, 姬光荣, 姬婷婷, 任红霞 2014 物理学报 63 134203]

    [16]

    Guo L X, Wang Y H, Wu Z S 2005 Acta Phys. Sin. 54 5130 (in Chinese)[郭立新, 王运华, 吴振森 2005 物理学报 54 5130]

    [17]

    Yang J L, Guo L X, Wan J W 2007 Acta Phys. Sin. 56 2106 (in Chinese)[杨俊岭, 郭立新, 万建伟 2007 物理学报 56 2106]

    [18]

    Ulaby F 1982 Microwave Remote Sensing (Vol. 2) (London:Addison-Wesbey Publishing)

    [19]

    Wang Y H, Guo L X, Wu Z S 2006 Acta Phys. Sin. 55 209 (in Chinese)[王运 华, 郭立新, 吴振森 2006 物理学报55 209]

    [20]

    Zhang Y D 2004 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese)[张 延冬 2004 博士学位论文 (西安:西安电子科技大学)]

    [21]

    Vladimir K, Daniele H 2003 J. Geophys. Res. 108 8054

    [22]

    Xie T, He C, William P, Kuang H L 2010 Chin. Phys. B 19 024101

    [23]

    Xu D L, Yu D Y 2001 Theory of Random Waves (Beijing:Higher Education Press) pp200-204 (in Chinese)[徐德伦, 于定勇 2001 随机海浪理论(北京:高 等教育出版社)第200–215页]

    [24]

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Xi'an:Xidian University Press) (in Chinese)[葛德彪, 闫 玉波 2005 电磁波时域有限差分方法(西安:西安电子科技大学出版社)]

计量
  • 文章访问数:  3435
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-30
  • 修回日期:  2017-04-25
  • 刊出日期:  2017-07-05

畸形波电磁散射特性分析及其特征识别标识的研究

  • 1. 浙江大学海洋学院物理海洋研究所, 舟山 316000
  • 通信作者: 樊伟, fanwei@zju.edu.cn
    基金项目: 国家自然科学基金(批准号:41576013)、国家高技术研究发展计划(批准号:2013AA122803)和国家重点研发计划(批准号:2016YFC1401404)资助的课题.

摘要: 针对弱非线性的Longuet-Higgins模型在模拟强非线性畸形波海面时所存在的问题,采用修正的相位调制法模拟一维畸形波时间、空间波面,该方法能够实现畸形波的定时定点生成,并且其波形既能保持目标谱的频谱结构,又能较大程度地满足波浪序列的统计特性.同时,基于改进的双尺度(TSM)法及时域有限差分法建立畸形波的电磁散射模型,经过相对平均偏差和均方根偏差误差分析后,基于TSM法研究分析了畸形波及其背景海面波的归一化雷达散射截面(NRCS)的计算结果.实验表明,合成孔径雷达成像中畸形波的NRCS比背景波要小,即畸形波的合成孔径雷达图像成像比背景波要灰暗,因此可以将NRCS作为畸形波的特征识别标识.通过分析研究不同极化方式、入射角、入射频率条件下畸形波与背景波面的电磁散射特性实验数据得出:当二者的NRCS差值大于-11.8 dB及以上时,即认为产生畸形波,这为实际的工程应用提供了参照标准.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回