搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波导谐振腔集成馈电型波前调控 惠更斯超表面研究

黄帅 吴天昊 管春生 丁旭旻 吴昱明 吴群 唐晓斌

引用本文:
Citation:

波导谐振腔集成馈电型波前调控 惠更斯超表面研究

黄帅, 吴天昊, 管春生, 丁旭旻, 吴昱明, 吴群, 唐晓斌

Cavity-excited Huygens’ metasurface for wavefront manipulation

Huang Shuai, Wu Tian-Hao, Guan Chun-Sheng, Ding Xu-Min, Wu Yu-Ming, Wu Qun, Tang Xiao-Bin
PDF
HTML
导出引用
  • 本文针对一种波导谐振腔集成馈电型惠更斯超表面重点进行了波束调控方法研究. 通过合理地调节单元中电偶极子和磁偶极子的尺寸参数, 对惠更斯超表面单元的相位调控范围实现了接近360°的相位覆盖, 并且保持了较高的传输效率. 研究中通过分析开口波导谐振腔馈电模式的谐振机理, 构建了具备集成馈电功能的开口波导谐振腔结构, 并表征了其电场极化特性, 掌握了口面电场分布规律. 在此基础上, 根据广义菲涅尔定律构建出具有不同相位梯度的惠更斯超表面单元阵列, 将其嵌入开口谐振腔, 从而保障波导内的电磁波定向辐射是采用一维惠更斯超表面机制工作. 仿真和实验结果均证明了所提出的波导谐振腔集成馈电超表面能有效地实现对辐射波方向的高效调控. 这种波导谐振腔加载超表面的方式不但能够实现对电磁波辐射角度的灵活调控, 提高电磁波调控的效率, 而且所设计的超表面具有结构紧凑的优点, 有利于系统的集成和小型化设计.
    In this paper, cavity-excited Huygens’ metasurface is proposed for high-efficiency wavefront manipulation. By adjusting the length of electric dipole and magnetic dipole , the proposed Huygens’ metasurface meta unit can provide nearly 360° phase coverage with sufficiently high transmission efficiency. Based on the analysis of the resonance mode of the cavity, the Huygens’ metasurface has successfully performed its function by adopting integrated feeding method. According to the generalized Snell’s law, metasurfaces with different phase gradients are designed. Combined with the cavity structure, one-dimensional Huygens’ metasurfaces excited by cavity is realized, which can directionally emit the electromagnetic waves from the cavity. Both the simulation and experimental results show that the proposed cavity excited metasurfaces can effectively manipulate the direction of the emitted beam. Such a kind of cavity-excited metasurface can flexibly control the emission angle of the electromagnetic wave, reduce the energy loss and improve the efficiency of the electromagnetic wave. These designs have the advantages of compact, light and easy integration.
      通信作者: 吴昱明, wuyuming@bit.edu.cn
    • 基金项目: 北京市自然科学基金(批准号: 4212054)、国家自然科学基金(批准号: 61871152, 62171153)和 黑龙江省自然科学基金项目(批准号: YQ2021F004).
      Corresponding author: Wu Yu-Ming, wuyuming@bit.edu.cn
    • Funds: Project supported by the Beijing Natural Science Foundation(Grant No. 4212054), National Natural Science Foundation of China (Grant Nos. 61871152, 62171153), and Heilongjiang Natural Science Foundation (Grant No. YQ2021F004).
    [1]

    Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z, Capasso F 2012 Nano Lett. 12 4932Google Scholar

    [2]

    Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, Li L, Wang S, Wang Z, Zhu S 2020 Photoni X 1 2Google Scholar

    [3]

    Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227Google Scholar

    [4]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [5]

    Chen P Y, Argyropoulos C, Alù A 2013 Phys. Rev. Lett. 111 233001Google Scholar

    [6]

    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [7]

    Guan C, Liu J, Ding X, Wang Z, Zhang K, Li H, Jin M, Burokur S N, Wu Q 2020 Nanophotonics 9 3605Google Scholar

    [8]

    Ding X, Wang Z, Hu G, Liu J, Zhang K, Li H, Ratni B, Burokur S N, Wu Q, Tan J, Qiu C W 2020 PhotoniX 1 16Google Scholar

    [9]

    Zhang L, Chen M Z, Tang W, Dai J Y, Miao L, Zhou X Y, Jin S, Cheng Q, Cui T J 2021 Nat Electron 4 218Google Scholar

    [10]

    Dai J, Tang W, Chen M Z, Chan C H, Cheng Q, Jin S, Cui T J 2021 IEEE Trans. Microw. Theory Tech. 69 1493Google Scholar

    [11]

    Dai J Y, Tang W K, Zhao J, Li X, Cheng Q, Ke J C, Chen M Z, Jin S, Cui T J 2019 Adv. Mater. Technol. 4 1900044Google Scholar

    [12]

    Dorrah A H, Chen M, Eleftheriades G V. 2018 IEEE Trans. Anten. Propag. 66 4729Google Scholar

    [13]

    Wong A M H, Eleftheriades G V 2018 Phys. Rev. X 8 011036

    [14]

    Zhu B O and Feng Y 2015 IEEE Trans. Anten. Propag. 63 5500Google Scholar

    [15]

    Zhao R, Zhu Z, Dong G 2019 Opt. Lett. 44 3482Google Scholar

    [16]

    Xu Y, Xu N, Liu H, Shan D, Song N, Gao J 2018 J. Opt. Soc. Am. B-Opt. Phys. 35 1248Google Scholar

    [17]

    Jia S L, Wan X, Su P, Zhao Y J, Cui T J 2016 Aip. Adv. 6 045024Google Scholar

    [18]

    Guan C, Wang Z, Ding X, Zhang K, Ratni B, Burokur S N, Jin M, Wu Q 2019 Opt. Express 27 7108Google Scholar

    [19]

    Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, Zhang L, Kim Y, Ding X, Zhang S, Alù A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar

    [20]

    Wang Z, Ding X, Zhang K, Ratni B, Burokur S N, Gu X, Wu Q 2018 Adv. Opt. Mater. 6 1800121Google Scholar

    [21]

    Wang Z, Ding X, Zhang K, Wu Q 2017 Sci. Rep. 7 9081Google Scholar

    [22]

    Zhao W, Jiang H, Liu B, Song J, Jiang Y, Tang C, Li J 2016 Sci. Rep. 6 30613Google Scholar

    [23]

    Wan X, Zhang L, Jia S, Yin J, Cui T J 2017 IEEE Trans. Anten. Propag. 65 4427Google Scholar

    [24]

    Zhao Z, Wang Y, Guan C, Zhang K, Wu Q, Li H, Liu J, Burokur S N, Ding X 2022 PhotoniX 3 15Google Scholar

    [25]

    Wang Z, Hu G, Wang X, Ding X, Zhang K, Li H, Burokur S N, Wu Q, Liu J, Tan J, Qiu C W 2022 Nat. Commun. 13 2188Google Scholar

    [26]

    Li H, Li Y B, Shen J L, Cui T J 2020 Adv. Opt. Mater. 8 1902057Google Scholar

    [27]

    Guo X, Ding Y, Chen X, Duan Y, Ni X 2020 Sci. Adv. 6 eabb4142Google Scholar

    [28]

    Xu P, Tian H W, Cai X, Jiang W X, Cui T J 2021 Adv. Funct. Mater 31 2100569Google Scholar

    [29]

    Shi H, Wang L, Zhao M, Chen J, Zhang A, Xu Z 2018 Mater 11 2448

  • 图 1  透射性惠更斯表面单元结构示意图 (a)设计的透射式惠更斯表面单元; (b)侧面结构示意图; (c)电谐振结构示意图; (d)磁谐振结构示意图

    Fig. 1.  Schematic diagram of transmissive Huygens’ meta-atom: (a) The designed transmissive Huygens’ meta-atom; (b) side view; (c) schematic diagram of electric dipole; (d) schematic diagram of magnetic dipole.

    图 2  惠更斯超表面单元的透射响应与单元结构参数关系图 (a)单元的传输幅度频谱图; (b)单元的传输相位频谱图; (c)不同结构尺寸的单元幅度响应分布图; (d)不同尺寸结构的单元相位响应分布图; (e)电偶极子电流分布; (f)磁偶极子电流分布

    Fig. 2.  Transmission responses of the Hugens’meta-atom: (a) Transmission amplitude spectral of the unit cell; (b) transmission phase spectral of the unit cell; (c) transmission amplitude response of the meta-atom as functions of Le and Lm; (d) transmission phase response of the meta-atom as functions of Le and Lm; (e) current distributions on the electric dipole; (f) currents distributions on the magnetic dipole.

    图 3  谐振腔馈电超表面示意图 (a)波导俯视图; (b)波导正视图; (c)波导加载超表面示意图

    Fig. 3.  Schematic diagram of the cavity-excited metasurface: (a) Top view of the cavity; (b) front view of the cavity; (c) cavity-excited metasurface.

    图 4  沿不同角度辐射的电场幅度及相位分布图 (a)无超表面加载的波导; (b)天线1; (c)天线2; (d)天线3

    Fig. 4.  Electric field distributions of amplitude and phase along different angles: (a) Waveguede without metasurface loaded; (b) antenna 1; (c) antenna 2; (d) antenna 3.

    图 5  集成馈电波导口面加载不同梯度相位分布超表面结构的波束角度偏转方向图 (a)天线1; (b)天线2; (c)天线3

    Fig. 5.  Far-field pattern of the cavity-excited metasurface with different phase gradient: (a) Antenna1;(b) antenna 2; (c) antenna 3.

    图 6  加工的开口矩形波导谐振腔及超表面实物图 (a)矩形开口波导; (b)不同相位梯度的超表面; (c)波导加载超表面的正面结构示意图; (d)波导加载超表面的侧面结构示意图

    Fig. 6.  The fabricated open cavity and metasurfaces: (a) Open cavity; (b) metasurfaces with different phase gradient; (c) front view of the cavity-excited metasurface; (d) side view of the cavity-excited metasurface.

    图 7  微波暗室测试环境

    Fig. 7.  The environment of the anechoic chamber.

    图 8  波导空馈和加载几组超表面测试得到的S11参数 (a)不加载超表面的开口波导; (b)天线1; (c)天线2; (d)天线3

    Fig. 8.  Measured S11 parameters of open cavity and cavity-excited metasurface with different phase gradient: (a) Open cavity without metasurface; (b) antenna 1; (c) antenna 2; (d) antenna 3.

    图 9  谐振腔馈电超表面E面测试方向图 (a)谐振腔不加载超表面; (b)天线1; (c)天线2; (d)天线3

    Fig. 9.  E-plane far-field pattern of cavity-excited metasurface: (a) Cavity without metasurface; (b) antenna 1; (c) antenna 2; (d) antenna 3.

  • [1]

    Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z, Capasso F 2012 Nano Lett. 12 4932Google Scholar

    [2]

    Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, Li L, Wang S, Wang Z, Zhu S 2020 Photoni X 1 2Google Scholar

    [3]

    Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227Google Scholar

    [4]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [5]

    Chen P Y, Argyropoulos C, Alù A 2013 Phys. Rev. Lett. 111 233001Google Scholar

    [6]

    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [7]

    Guan C, Liu J, Ding X, Wang Z, Zhang K, Li H, Jin M, Burokur S N, Wu Q 2020 Nanophotonics 9 3605Google Scholar

    [8]

    Ding X, Wang Z, Hu G, Liu J, Zhang K, Li H, Ratni B, Burokur S N, Wu Q, Tan J, Qiu C W 2020 PhotoniX 1 16Google Scholar

    [9]

    Zhang L, Chen M Z, Tang W, Dai J Y, Miao L, Zhou X Y, Jin S, Cheng Q, Cui T J 2021 Nat Electron 4 218Google Scholar

    [10]

    Dai J, Tang W, Chen M Z, Chan C H, Cheng Q, Jin S, Cui T J 2021 IEEE Trans. Microw. Theory Tech. 69 1493Google Scholar

    [11]

    Dai J Y, Tang W K, Zhao J, Li X, Cheng Q, Ke J C, Chen M Z, Jin S, Cui T J 2019 Adv. Mater. Technol. 4 1900044Google Scholar

    [12]

    Dorrah A H, Chen M, Eleftheriades G V. 2018 IEEE Trans. Anten. Propag. 66 4729Google Scholar

    [13]

    Wong A M H, Eleftheriades G V 2018 Phys. Rev. X 8 011036

    [14]

    Zhu B O and Feng Y 2015 IEEE Trans. Anten. Propag. 63 5500Google Scholar

    [15]

    Zhao R, Zhu Z, Dong G 2019 Opt. Lett. 44 3482Google Scholar

    [16]

    Xu Y, Xu N, Liu H, Shan D, Song N, Gao J 2018 J. Opt. Soc. Am. B-Opt. Phys. 35 1248Google Scholar

    [17]

    Jia S L, Wan X, Su P, Zhao Y J, Cui T J 2016 Aip. Adv. 6 045024Google Scholar

    [18]

    Guan C, Wang Z, Ding X, Zhang K, Ratni B, Burokur S N, Jin M, Wu Q 2019 Opt. Express 27 7108Google Scholar

    [19]

    Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, Zhang L, Kim Y, Ding X, Zhang S, Alù A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar

    [20]

    Wang Z, Ding X, Zhang K, Ratni B, Burokur S N, Gu X, Wu Q 2018 Adv. Opt. Mater. 6 1800121Google Scholar

    [21]

    Wang Z, Ding X, Zhang K, Wu Q 2017 Sci. Rep. 7 9081Google Scholar

    [22]

    Zhao W, Jiang H, Liu B, Song J, Jiang Y, Tang C, Li J 2016 Sci. Rep. 6 30613Google Scholar

    [23]

    Wan X, Zhang L, Jia S, Yin J, Cui T J 2017 IEEE Trans. Anten. Propag. 65 4427Google Scholar

    [24]

    Zhao Z, Wang Y, Guan C, Zhang K, Wu Q, Li H, Liu J, Burokur S N, Ding X 2022 PhotoniX 3 15Google Scholar

    [25]

    Wang Z, Hu G, Wang X, Ding X, Zhang K, Li H, Burokur S N, Wu Q, Liu J, Tan J, Qiu C W 2022 Nat. Commun. 13 2188Google Scholar

    [26]

    Li H, Li Y B, Shen J L, Cui T J 2020 Adv. Opt. Mater. 8 1902057Google Scholar

    [27]

    Guo X, Ding Y, Chen X, Duan Y, Ni X 2020 Sci. Adv. 6 eabb4142Google Scholar

    [28]

    Xu P, Tian H W, Cai X, Jiang W X, Cui T J 2021 Adv. Funct. Mater 31 2100569Google Scholar

    [29]

    Shi H, Wang L, Zhao M, Chen J, Zhang A, Xu Z 2018 Mater 11 2448

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] 孟祥裕, 李涛, 余彬彬, 邰永航. 探究四聚体超表面中多极准连续域束缚态的调控机制. 物理学报, 2024, 73(10): 107801. doi: 10.7498/aps.73.20240272
    [3] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [4] 魏涛, 张玉洁, 葛宏义, 蒋玉英, 吴旭阳, 孙振雨, 季晓迪, 补雨薇, 贾柯柯. 复合相位调控的波束转向可控反射型超表面. 物理学报, 2024, 73(22): 224201. doi: 10.7498/aps.73.20240764
    [5] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [6] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [7] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [8] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [9] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [10] 张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军. 编码超构表面实现双波束独立可重构. 物理学报, 2021, 70(17): 178102. doi: 10.7498/aps.70.20210344
    [11] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生. 物理学报, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [12] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [13] 郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪. 一种复合型极化转换表面及其在天线辐射散射调控中的应用. 物理学报, 2020, 69(23): 234102. doi: 10.7498/aps.69.20200797
    [14] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [15] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [16] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [17] 李小兵, 陆卫兵, 刘震国, 陈昊. 基于可调石墨烯超表面的宽角度动态波束控制. 物理学报, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [18] 陈欢, 凌晓辉, 何武光, 李钱光, 易煦农. 基于Pancharatnam-Berry相位调控产生贝塞尔光束. 物理学报, 2017, 66(4): 044203. doi: 10.7498/aps.66.044203
    [19] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [20] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
计量
  • 文章访问数:  4435
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 修回日期:  2022-07-30
  • 上网日期:  2022-11-07
  • 刊出日期:  2022-11-20

/

返回文章
返回