搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一溴化锶分子低激发态的光谱特性研究

伍冬兰 郭自依 周俊杰 阮文 曾学锋 谢安东

引用本文:
Citation:

一溴化锶分子低激发态的光谱特性研究

伍冬兰, 郭自依, 周俊杰, 阮文, 曾学锋, 谢安东

Spectral characteristics of low excited state of strontium monobromide molecule

Wu Dong-Lan, Guo Zi-Yi, Zhou Jun-Jie, Ruan Wen, Zeng Xue-Feng, Xie An-Dong
PDF
HTML
导出引用
  • 采用内收缩多参考组态相互作用(ic-MRCI)方法和相对论有效芯赝势基(aug-cc-pV5Z-PP), 优化计算一溴化锶(88Sr79Br)分子14个低激发电子态的电子结构和单点能. 为了获得更加精确的光谱参数, 引入Davidson、核价电子相关和相对论效应修正单点能, 根据优化修正得到的单点能分析获得了最低5个束缚态的势能曲线和偶极矩. 利用LEVEL8.0程序拟合修正的势能曲线, 得到各束缚态的光谱常数、分子常数和振动能级等光谱性质参数. 对比发现本文计算的结果与实验值吻合较好, 最后给出了跃迁性质参数Franck-Condon因子和辐射寿命. 这些光谱特性参数为进一步实验测量和构建分子激光冷却方案提供理论支持.
    The electronic structures and single point energy of 14 lowest electronic states of 88Sr79Br molecule are optimized by using the internal contraction multi-reference configuration interaction method and relativistic effective core pseudo-potential basis. Because 88Sr79Br molecule belongs to heavy element system, the single point energy must be corrected to obtain more accurate spectral parameters. Therefore, Davidson is introduced to correct the energy inconsistency, nuclear valence correlation is used to correct the electron correlation effect of inner shell and valence shell, and the relativistic scalar effect is corrected by calculating the third-order Douglas-Kroll-Hess Hamilton single electron integral. According to the single point energy calculated by the modified optimization, the potential energy curves, electric dipole moments, and transition dipole moments of 14 lowest electronic states are obtained. Using the latest LEVEL8.0 program to fit the modified potential energy curve, the spectral constants, molecular constants and vibration energy levels of 5 lowest bound states of 88Sr79Br molecule are given. In order to explain the changing trend of spectral constants of homologous compounds, the spectral parameters of each compound are compared and analyzed in this paper. At the same time, the vibration energy levels and molecular constants of 88Sr81Br molecule are also fitted and calculated for analyzing the influence of isotopes. The comparative analysis shows that the results of 88Sr79Br molecule are in better agreement with the experimental values. Finally, the Franck-Condon factors are gained by fitting the optimized single point energy and transition dipole moment of 88Sr79Br molecule. The transition band with the largest factor and obvious diagonalization is selected by analyzing the Franck-Condon factor of each transition band, and whether it meets the conditions for selecting laser cooling molecular system is judged. The radiation lifetimes of the transitions from the lowest two excited states to the ground state are calculated by combining the transition dipole moment, Franck-Condon factor, single point energy and vibration energy level of each electronic state. The results of this paper are in good agreement with the experimental values, which shows that the method in this paper is reliable. These spectral characteristic parameters provide theoretical support for further experimental measurement and construction of molecular laser cooling scheme of 88Sr79Br molecule.
      通信作者: 伍冬兰, wudonglan1216@sina.com
    • 基金项目: 国家自然科学基金(批准号: 11564019, 11147158)和江西省教育厅科学技术研究项目(批准号:GJJ211015)资助的课题.
      Corresponding author: Wu Dong-Lan, wudonglan1216@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grand Nos. 11564019, 11147158), and Jiangxi Provincial Education Department Project, China (Grand No. GJJ211015).
    [1]

    Yang C L, Zhang X Y, Gao F, Ren T Q 2007 J. Mol. Struct. THEOCHEM 807 147Google Scholar

    [2]

    Wang C, Li N, Xia Y, Zhang X, Ge M, Liu Y, Li Q 2011 Comput. Theor. Chem. 963 319Google Scholar

    [3]

    Short C I, Hauschildt P H 2006 Astrophys. J. 641 494Google Scholar

    [4]

    Carlson K D, Claydon C R 1967 Adv. High Temp. Chem. 1 43Google Scholar

    [5]

    Hansen C J, Bergemann M, Cescutti G, Francois P, Arcones A, Karakas A I, Lind K, Chiappini C 2013 Astron. Astrophys. 551 1Google Scholar

    [6]

    Bergemann M, Hansen C J, Bautista M, Ruchti G 2012 Astron. Astrophys. 546 1Google Scholar

    [7]

    Caffau E, Andrievsky S, Korotin S, Origlia L, Oliva E, Sanna N, Ludwig H G, Bonifacio P 2016 Astron. Astrophys. 585 44Google Scholar

    [8]

    Törring T, Doebl K, Weiler G 1985 Chem. Phys. Lett. 117 539Google Scholar

    [9]

    Ernst W E, Schröder J O 1986 Z. Phys. D:At. Mol. Clusters 1 103Google Scholar

    [10]

    Keijzer F, Teule J M, Bulthuis J, de Graaff G J, Hilgeman M H, Janssen M H M, van Kleef E H, van Leuken J J, Stolte S 1996 Chem. Phys. 207 261Google Scholar

    [11]

    Coxon J A, Dickinson C S 1998 J. Mol. Spectrosc. 190 150Google Scholar

    [12]

    Gurvich L V, Ryabova V G, Khitrov A N 1973 Faraday Symp. Chem. Soc. 8 83Google Scholar

    [13]

    Hildenbrand D L 1977 J. Chem. Phys. 66 3526Google Scholar

    [14]

    Ernst W E, Schröder J O 1986 J. Mol. Spectrosc. 117 444Google Scholar

    [15]

    Dickinson C S, Coxon J A 2003 J. Mol. Spectrosc. 221 269Google Scholar

    [16]

    Schröder J O, Ernst W E 1985 J. Mol. Spectrosc. 112 413Google Scholar

    [17]

    Castano F, Sanchez Rayo M N, Pereira R, Adams J W, Husain D, Schifino J 1994 J. Photochem. Photobiol. , A 83 79Google Scholar

    [18]

    Gunduz S, Akman S 2014 Microchem. J. 116 1Google Scholar

    [19]

    Werner H J, Knowles P J, Knizia G, et al. 2012 MOLPRO, version 2012.1, a package of ab initio Programs

    [20]

    Peterson K A, Figgen D, Goll E, Stoll H, Dolg M 2003 J. Chem. Phys. 119 11099Google Scholar

    [21]

    Werner H-J, Knowles P J 1985 J. Chem. Phys. 82 5053Google Scholar

    [22]

    Knowles P J, Werner H-J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [23]

    Werner H-J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [24]

    Knowles P J, Werner H-J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [25]

    Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasi-bound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663

    [26]

    Wu D L, Tan B, Wen Y F, Zeng X F, Xie A D, Yan B 2016 Spectrochim. Acta, Part A 161 101Google Scholar

    [27]

    Fu M K, Ma H T, Cao J W, Bian W S 2017 J. Chem. Phys. 146 134309Google Scholar

    [28]

    Adema Z, Makhlouf S, Taher F 2016 Comput. Theor. Chem. 1093 48Google Scholar

    [29]

    Liu L, Yang C L, Wang M S, Ma X G, Sun Z P 2019 Spectrochim. Acta, Part A 164 162Google Scholar

    [30]

    Huber K P, Herzberg G 1979 Constants of Diatonic Molecules, Molecular spectra molecular structure (Vol. IV) (NewYork: Van Nostrand Reinhold)

    [31]

    Wu D L, Lin C Q, Wen Y F, Xie A D, Yan B 2017 Chin. Phys. B 594 083101Google Scholar

    [32]

    魏长立, 梁桂颖, 刘晓婷, 颜培源, 闫冰 2016 物理学报 65 163101Google Scholar

    Wei C L, Liang G Y, Liu X T, Yan P Y, Yan B 2016 Acta. Phys. Sin. 65 163101Google Scholar

    [33]

    Zhang X M, Liang G Y, Li R, Shi D D, Liu Y C, Liu X S, Xu H F, Yan B 2014 Chem. Phys. 443 142Google Scholar

    [34]

    Okabe H 1978 Photochemistry of Small Molecules (New York: Wiley-Interscience)

    [35]

    Zou W L, Liu W J 2005 J. Comput. Chem. 26 106Google Scholar

    [36]

    Bahrini C, Augé-Rochereau F, Rostas J, Taïeb G 2006 Chem. Phys. 330 130Google Scholar

  • 图 1  88Sr79Br分子5个激发态的势能曲线

    Fig. 1.  The potential energy curves of 5 lowest electronic states of 88Sr79Br.

    图 2  88Sr79Br分子5个束缚态的电偶极矩

    Fig. 2.  The permanent dipole moments of 5 lowest electronic states of 88Sr79Br.

    图 3  88Sr79Br分子5个束缚态的跃迁偶极矩

    Fig. 3.  The transition dipole moments of 5 bound states of 88Sr79Br.

    表 1  5个束缚态的光谱常数

    Table 1.  The spectroscopic constants of the 5 lowest electronic states.

    Λ-S 态Te/cm–1Re/nmωe/cm–1ωeχe/cm–1Be/cm–1αe/(10–4 cm–1)De/eVRe附近主要电子组态/%
    X2Σ+0.00.2740216.170.4990.05381.7313.31011σ212σα13σ042(80.2)
    11σ212σ013σα42(6.9)
    理论[28]0.00.2746212.780.5090.0535
    理论[29]0.00.2799205.60.530.0511.742
    实验[30]0.00.27352160.510.0541
    A2Π14679.3480.2701222.380.53460.05491.2131.33411σ212σ013σ043(86.1)
    理论[28]146570.2722200.570.0544
    理论[29]14269.90.275215.10.540.0521.241
    实验[30]148500.27172220.530.0545
    B2Σ+15376.8030.2702223.030.52720.05521.7991.59711σ212σ013σα42(79.2)
    11σ212σα13σ042(6.1)
    理论[28]152080.2710220.50.520.0547
    理论[29]15222.80.2749214.50.560.0531.831
    实验[30]153520.27012220.530.0552
    C2Π24947.8180.3373201.070.50120.05152.3691.500

    11σ212σ213σ033(80.0)
    11σ212σ013σ043(2.2)
    11σ212σ013σ034(2.8)
    11σα12σα13σ043(2.7)
    理论[28]254910.28101970.490.0509
    理论[29]25323.20.285191.20.460.0492.477
    实验[30]246652050.49
    32Σ+29079.7560.3548238.980.45560.05421.6531.10911σ212σα13σ042(1.3)
    11σα12σ213σ042(69.4)
    11σ212σ013σα42(5.3)
    11σ212σα13σ033(2.9)
    11σ212σ013σα41(.9)
    理论[28]281170.2662420.540.0567
    理论[29]27228.90.27235.80.540.0551.660
    实验[30]289582470.55
    下载: 导出CSV

    表 2  88Sr79Br分子5个束缚态的Gν, BνDν

    Table 2.  The values of Gν, Bν and Dν of 5 lowest electronic states for 88Sr79Br molecule.

    ν0123456789
    X2Σ+Gν/cm–10217.21422.31648.92863.521077.131289.841501.601712.391922.24
    Bν/cm–10.0541700.0540030.0538360.0536630.0534940.0533300.0531650.0529970.0528270.052659
    Dν/(10–8 cm–1)1.2993011.3030531.2846381.2977131.2991151.2953111.2964351.2987901.2960921.292529
    A2ΠGν/cm–114691.8714934.2315175.2515415.9615656.4615896.1216134.0716369.7316603.116834.89
    Bν/cm–10.0557800.0556200.0554620.0552950.0551240.0549760.0548610.0547720.0546870.054578
    Dν/(10–8 cm–1)1.3477031.3551081.3316051.3133711.3318601.3904801.4544301.4760561.4529011.372534
    B2Σ+Gν/cm–115376.5215507.8415738.3315967.8916196.7416425.0616652.6116878.9717103.817327.04
    Bν/cm–10.0551520.0549980.0548420.0546790.0545010.0543260.0541700.0540200.0538600.053722
    Dν/(10–8 cm–1)1.3835361.3809251.3822061.3700451.3522581.3612861.3705001.4305381.4547001.453644
    C2ΠGν/cm–125067.1125478.2925768.525995.0126202.1226394.0326575.3326748.6926915.6527077.76
    Bν/cm–10.0516130.0519290.0526940.0531180.05361730.0539910.0543890.0547620.0551040.055412
    Dν/(10–8 cm–1)7.3425552.0529934.1379824.6299065.8800886.8628567.66976268.61531369.2989999.430722
    32Σ+Gν/cm–131178.7931534.7431825.0332085.2432324.0332546.5132756.7732958.153315333342.76
    Bν/cm–10.0524570.0529860.0534980.0539990.0544840.0549590.0554140.0558430.0562460.056634
    Dν/(10–8 cm–1)8.4879421.6815842.2378262.9046203.6119474.2504994.7821005.2337305.6767206.069434
    下载: 导出CSV

    表 3  88Sr79Br分子A2Π–X2Σ+和B2Σ+–X2Σ+跃迁的Franck-Condon因子

    Table 3.  The Franck-Condon factors of the transitions A2Π–X2Σ+和B2Σ+–X2Σ+ of 88Sr79Br.

    ν'' = 0123456789
    A2Π–X2Σ+
    ν' = 00.6450220.3366880.0980080.0177720.0022640.0002250.0000190.0000010.0000000.000000
    10.4366880.0830760.3031890.1903720.6615330.1653780.0033160.0005680.0000870.000011
    20.0980080.4349730.0008350.1809700.2239530.1132140.0368270.0090540.0018120.000305
    30.0177720.2939910.3188270.0558750.0702560.2562390.1707410.0625310.0184990.004301
    40.0022630.0539210.2476780.1002250.1251480.0109810.1771460.1903500.0897280.031718
    50.0002250.0093920.0997350.2716590.0248980.1604840.0014730.0985320.1700790.114744
    60.0000190.0011590.0227420.1454080.2361220.0000760.1551290.0248340.0464170.151117
    70.0000000.0001100.0034730.0428320.1818750.1781320.0146140.1503550.0621320.011646
    80.0000000.0000080.0003910.0080500.0687360.2026330.0953790.0505040.0734010.096387
    90.0000000.0000000.0000340.0010750.0157630.0980880.2046970.0426850.0891240.031198
    B2Σ+–X2Σ+
    ν' = 00.8256050.2382340.0333470.0026660.0001420.0000060.0000000.0000000.0000000.000000
    10.3882340.6348800.1108140.0942710.0884900.0628730.0403840.0000470.0000060.000000
    20.0333470.4143950.5205520.0903040.0848780.0778530.0673090.0511750.0001650.000020
    30.0026660.0834490.3667730.4232860.0828000.0723010.0613200.0142680.0026570.000419
    40.0001420.0096780.1076910.3174020.3500420.0976380.06022190.0555840.0235730.005001
    50.0000060.0006540.0521620.0876920.2800180.3176410.0831120.079250.0683400.044978
    60.0000000.0000000.0001170.0063410.0989180.2773820.3094020.0812960.0637110.051334
    70.0000000.0000000.0000930.0038610.0573130.0556100.2450250.2927090.0365110.075513
    80.0000000.0000000.0000040.0002450.0072480.0805790.0696750.1865590.2277520.010265
    90.0000000.0000000.0000000.0000120.0005520.0122630.0363220.0699890.1214990.152774
    下载: 导出CSV

    表 4  88Sr79Br分子A2Π–X2Σ+和B2Σ+–X2Σ+跃迁的辐射寿命

    Table 4.  The radiative lifetimes of the transitions A2Π–X2Σ+ and B2Σ+–X2Σ+ of 88Sr79Br.

    TransitionRadiative lifetimes/ns
    ν′ = 0ν′ = 1ν′ = 2
    A2Π–X2Σ+32.2332.3532.56
    B2Σ+–X2Σ+40.9340.9541.22
    下载: 导出CSV
  • [1]

    Yang C L, Zhang X Y, Gao F, Ren T Q 2007 J. Mol. Struct. THEOCHEM 807 147Google Scholar

    [2]

    Wang C, Li N, Xia Y, Zhang X, Ge M, Liu Y, Li Q 2011 Comput. Theor. Chem. 963 319Google Scholar

    [3]

    Short C I, Hauschildt P H 2006 Astrophys. J. 641 494Google Scholar

    [4]

    Carlson K D, Claydon C R 1967 Adv. High Temp. Chem. 1 43Google Scholar

    [5]

    Hansen C J, Bergemann M, Cescutti G, Francois P, Arcones A, Karakas A I, Lind K, Chiappini C 2013 Astron. Astrophys. 551 1Google Scholar

    [6]

    Bergemann M, Hansen C J, Bautista M, Ruchti G 2012 Astron. Astrophys. 546 1Google Scholar

    [7]

    Caffau E, Andrievsky S, Korotin S, Origlia L, Oliva E, Sanna N, Ludwig H G, Bonifacio P 2016 Astron. Astrophys. 585 44Google Scholar

    [8]

    Törring T, Doebl K, Weiler G 1985 Chem. Phys. Lett. 117 539Google Scholar

    [9]

    Ernst W E, Schröder J O 1986 Z. Phys. D:At. Mol. Clusters 1 103Google Scholar

    [10]

    Keijzer F, Teule J M, Bulthuis J, de Graaff G J, Hilgeman M H, Janssen M H M, van Kleef E H, van Leuken J J, Stolte S 1996 Chem. Phys. 207 261Google Scholar

    [11]

    Coxon J A, Dickinson C S 1998 J. Mol. Spectrosc. 190 150Google Scholar

    [12]

    Gurvich L V, Ryabova V G, Khitrov A N 1973 Faraday Symp. Chem. Soc. 8 83Google Scholar

    [13]

    Hildenbrand D L 1977 J. Chem. Phys. 66 3526Google Scholar

    [14]

    Ernst W E, Schröder J O 1986 J. Mol. Spectrosc. 117 444Google Scholar

    [15]

    Dickinson C S, Coxon J A 2003 J. Mol. Spectrosc. 221 269Google Scholar

    [16]

    Schröder J O, Ernst W E 1985 J. Mol. Spectrosc. 112 413Google Scholar

    [17]

    Castano F, Sanchez Rayo M N, Pereira R, Adams J W, Husain D, Schifino J 1994 J. Photochem. Photobiol. , A 83 79Google Scholar

    [18]

    Gunduz S, Akman S 2014 Microchem. J. 116 1Google Scholar

    [19]

    Werner H J, Knowles P J, Knizia G, et al. 2012 MOLPRO, version 2012.1, a package of ab initio Programs

    [20]

    Peterson K A, Figgen D, Goll E, Stoll H, Dolg M 2003 J. Chem. Phys. 119 11099Google Scholar

    [21]

    Werner H-J, Knowles P J 1985 J. Chem. Phys. 82 5053Google Scholar

    [22]

    Knowles P J, Werner H-J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [23]

    Werner H-J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [24]

    Knowles P J, Werner H-J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [25]

    Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasi-bound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663

    [26]

    Wu D L, Tan B, Wen Y F, Zeng X F, Xie A D, Yan B 2016 Spectrochim. Acta, Part A 161 101Google Scholar

    [27]

    Fu M K, Ma H T, Cao J W, Bian W S 2017 J. Chem. Phys. 146 134309Google Scholar

    [28]

    Adema Z, Makhlouf S, Taher F 2016 Comput. Theor. Chem. 1093 48Google Scholar

    [29]

    Liu L, Yang C L, Wang M S, Ma X G, Sun Z P 2019 Spectrochim. Acta, Part A 164 162Google Scholar

    [30]

    Huber K P, Herzberg G 1979 Constants of Diatonic Molecules, Molecular spectra molecular structure (Vol. IV) (NewYork: Van Nostrand Reinhold)

    [31]

    Wu D L, Lin C Q, Wen Y F, Xie A D, Yan B 2017 Chin. Phys. B 594 083101Google Scholar

    [32]

    魏长立, 梁桂颖, 刘晓婷, 颜培源, 闫冰 2016 物理学报 65 163101Google Scholar

    Wei C L, Liang G Y, Liu X T, Yan P Y, Yan B 2016 Acta. Phys. Sin. 65 163101Google Scholar

    [33]

    Zhang X M, Liang G Y, Li R, Shi D D, Liu Y C, Liu X S, Xu H F, Yan B 2014 Chem. Phys. 443 142Google Scholar

    [34]

    Okabe H 1978 Photochemistry of Small Molecules (New York: Wiley-Interscience)

    [35]

    Zou W L, Liu W J 2005 J. Comput. Chem. 26 106Google Scholar

    [36]

    Bahrini C, Augé-Rochereau F, Rostas J, Taïeb G 2006 Chem. Phys. 330 130Google Scholar

  • [1] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松. SbS电子基态及激发态势能曲线和振动能级的理论研究. 物理学报, 2022, 71(2): 023101. doi: 10.7498/aps.71.20211441
    [2] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松. SbS 电子基态及激发态的势能曲线和振动能级的理论研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211441
    [3] 蹇君, 雷娇, 樊群超, 范志祥, 马杰, 付佳, 李会东, 徐勇根. NO分子宏观气体热力学性质的理论研究. 物理学报, 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [4] 伍冬兰, 袁金宏, 温玉锋, 曾学锋, 谢安东. 单氯化锶分子低激发态的光谱及跃迁特性. 物理学报, 2019, 68(3): 033101. doi: 10.7498/aps.68.20181770
    [5] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [6] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [7] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究. 物理学报, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [8] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级. 物理学报, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [9] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [10] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [11] 樊群超, 孙卫国, 李会东, 冯灏. Li2部分电子态的完全振动能谱与离解能的精确研究. 物理学报, 2010, 59(7): 4577-4583. doi: 10.7498/aps.59.4577
    [12] 陈恒杰, 程新路, 唐海燕, 王全武, 苏欣纺. LiC分子基态及其低电子激发态的多参考组态相互作用方法研究. 物理学报, 2010, 59(7): 4556-4563. doi: 10.7498/aps.59.4556
    [13] 樊群超, 冯灏, 孙卫国. 双原子离子振动光谱与离解能的研究. 物理学报, 2010, 59(1): 203-209. doi: 10.7498/aps.59.203
    [14] 刘 艳, 任维义, 王阿署, 刘松红. 分子部分电子态的高阶振动能级和离解能的精确研究. 物理学报, 2008, 57(3): 1599-1607. doi: 10.7498/aps.57.1599
    [15] 施德恒, 孙金锋, 朱遵略, 马 恒, 杨向东. 7Li2(X1Σ+g)分子的振动能级、转动惯量及离心畸变常数. 物理学报, 2008, 57(1): 165-171. doi: 10.7498/aps.57.165
    [16] 高 峰, 杨传路, 张晓燕. 多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数. 物理学报, 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [17] 施德恒, 孙金锋, 刘玉芳, 马 恒, 朱遵略, 杨向东. 7Li2分子23Πu激发态的解析势能函数、振动能级及其转动惯量. 物理学报, 2007, 56(8): 4454-4460. doi: 10.7498/aps.56.4454
    [18] 施德恒, 孙金锋, 马 恒, 朱遵略. 7Li2分子2 3Σ+g激发态的解析势能函数、谐振频率及振动能级. 物理学报, 2007, 56(4): 2085-2091. doi: 10.7498/aps.56.2085
    [19] 胡士德, 孙卫国, 任维义, 冯 灏. 碱金属氢化物双原子分子部分电子态的完全振动能谱和分子离解能的精确研究. 物理学报, 2006, 55(5): 2185-2193. doi: 10.7498/aps.55.2185
    [20] 任维义, 孙卫国. Na2分子部分电子态的完全振动能谱和离解能的精确研究. 物理学报, 2005, 54(2): 594-605. doi: 10.7498/aps.54.594
计量
  • 文章访问数:  3465
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-27
  • 修回日期:  2022-07-26
  • 上网日期:  2022-11-08
  • 刊出日期:  2022-11-20

/

返回文章
返回