搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SbS电子基态及激发态势能曲线和振动能级的理论研究

王新宇 王艺霖 石虔韩 汪庆龙 于洪洋 金园园 李松

引用本文:
Citation:

SbS电子基态及激发态势能曲线和振动能级的理论研究

王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松

Theoretical study of potential energy curves and vibrational levels of low-lying electronic states of SbS

Wang Xin-Yu, Wang Yi-Lin, Shi Qian-Han, Wang Qing-Long, Yu Hong-Yang, Jin Yuan-Yuan, Li Song
PDF
HTML
导出引用
  • 运用多参考组态相互作用(MRCI+Q)方法, 对硫化锑(SbS)能量最低的3个Ʌ-S离解极限的所有电子态以及考虑自旋-轨道耦合效应后分裂所得的Ω态进行了计算. 得到27个Ʌ-S电子态及能量最低的12个Ω态的电子结构、光谱常数和振动能级等信息. Sb原子和S原子能级的计算值与实验值相符很好. 分析表明自旋-轨道耦合效应对光谱常数与振动能级的影响总体上并不显著. 对X(3/2)→X(1/2), 2(1/2)→X(1/2), 4(1/2)→X(1/2), 5(1/2)→X(1/2)及6(1/2)→X(1/2)跃迁的振动光谱进行了模拟与分析, 其中X(3/2)→X(1/2)谱带位于中红外波段, 其他谱带均位于可见光波段. 此外, 对氮族元素硫化物的电子态进行了验证计算, 计算结果与已有实验结果吻合较好, 体现了同族元素代换后相关物性的渐变规律性.
    In this paper, highly correlated ab initio calculations are performed for accurately determining the electronic structures and spectroscopic features of the Λ-S and Ω low-lying electronic states of SbS . The potential energy curves for 27 Λ-S states of the first three dissociation asymptotes are constructed. Spectroscopic constants and vibrational states for all bound states are well determined. The calculated atomic states for both atoms are consistent with experimental data quite well. Several low-lying Ω electronic states are also investigated, and their respective spectroscopic constants and vibrational states are obtained and compared with those of corresponding Λ-S states, which indicates that the spin-orbit coupling effect gives rise to a minor influence on the electronic states of SbS. To verify our computational accuracy, the additional calculations for the low-lying electronic states of PS, AsS and BiS are also carried out. Our derived results are in reasonable agreement with available experimental data. In addition, vibrational spectra from the excited Ω states to the ground state of SbS are simulated, including bands of X(3/2)→X(1/2), 2(1/2)→X(1/2), 4(1/2)→X(1/2), 5(1/2)→X(1/2) and 6(1/2)→X(1/2). The X(3/2)→X(1/2) band is found in the mid-infrared region, while the others are located in the visible region. The predictive results provided in this paper are expected to serve as a guideline for further researches, such as assisting laboratorial detections and analyzing observed spectrum of SbS.
      通信作者: 李松, lsong@yangtzeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11804031)资助的课题
      Corresponding author: Li Song, lsong@yangtzeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11804031).
    [1]

    Lian W T, Jiang C H, Yin Y W, Tang R F, Li G, Zhang L J, Che B, Chen T 2021 Nat. Commun. 12 3260Google Scholar

    [2]

    Zhao R M, Yang X L, Shi H L, Du M H 2021 Phys. Rev. Mater. 5 054605Google Scholar

    [3]

    Yang Y, Shi C W, Lv K, Wang Q, Sun X, Chen W C 2021 New J. Chem. 45 10357Google Scholar

    [4]

    Y Grad L, von Rohr F O, Hengsberger M, Osterwalder J 2021 Phys. Rev. Mater. 5 075401Google Scholar

    [5]

    Hu X K, Ma Y X, Pang Z X, Li P 2019 Chem. Phys. 523 110Google Scholar

    [6]

    Zhang J W, Lian W T, Yin Y W, et al. 2020 Solar RRL 4 2000048Google Scholar

    [7]

    Shimauchi M, Nishiyama Y 1968 Sci. Light 17 76

    [8]

    Fowler A, Bakker C J 1932 Proc. Roy. Soc. (London) A 136 28

    [9]

    Zeeman P B 1951 Can. J Phys. 29 174Google Scholar

    [10]

    Barrow R F, Drummond G, Zeeman P B 1954 Proc. Roy. Soc. (London) A 67 365

    [11]

    Amano T, Saito S, Hirota E, Morino Y 1969 J. Mol. Spectrosc. 32 97Google Scholar

    [12]

    Jenouvrier A, Pascat B 1973 Can. J. Phys. 51 2143Google Scholar

    [13]

    Jenouvrier A, Pascat B 1980 Can. J. Phys. 58 1275Google Scholar

    [14]

    Wang T T, Li C Y, Zheng X F, Chen Y 2007 Chin. Sci. Bull. 52 596Google Scholar

    [15]

    Dressler K, Miescher E 1955 Proc. Roy. Soc. (London) A 68 542Google Scholar

    [16]

    Dressler K 1955 Ph. D. Dissertation (Basel: Universität Basel)

    [17]

    Narasimham N A, Subramanian T K B 1969 J. Mol. Spectrosc. 29 294Google Scholar

    [18]

    Narasimham N A, Subramanian T K B 1971 J. Mol. Spectrosc. 37 371Google Scholar

    [19]

    Jenouvrier A, Pascat B 1978 Can. J. Phys. 56 1088Google Scholar

    [20]

    Balasubramanian T K, Dixit M N, Narasimham N A 1979 Pramana 12 707Google Scholar

    [21]

    Kawaguchi K, Hirota E, Ohishi M, Suzuki H, Takano S, Yamamoto S, Saito S 1988 J. Mol. Spectrosc. 130 81Google Scholar

    [22]

    Ohishi M, Yamamoto S, Saito S, et al. 1988 Astrophys. J 329 511Google Scholar

    [23]

    Klein H, Klisch E, Winnewisser G 1999 Z. Naturforschung A 54 137Google Scholar

    [24]

    Shimauchi M, 1969 Sci. Light 18 90

    [25]

    Shimauchi M, 1971 Can. J. Phys. 49 1249Google Scholar

    [26]

    Shimauchi M, Sakaba Y, Kikuchi S 1972 Sci. Light 21 1

    [27]

    Shimauchi M, Iwata H, Matsuno T, Sakaba Y, Lee S K, Karasawa S 1972 Sci. Light 21 145

    [28]

    Shimauchi M, Karasawa S 1973 Sci. Light 22 127

    [29]

    Barrow R F, Stobart O V, Vaughan H 1967 Proc. Phys. Soc. Lond. 90 555Google Scholar

    [30]

    Patiño P, Eland J H D, Barrow R F 1984 J. Phys. B:At. Mol. Phys. 17 1009Google Scholar

    [31]

    Izumi K, Cohen E A, Setzer K D, Fink E H, Kawaguchi K 2008 J. Mol. Spectrosc. 252 198Google Scholar

    [32]

    Setzer K D, Meinecke F, Fink E H 2009 J. Mol. Spectrosc. 258 56Google Scholar

    [33]

    O’Hare P A G 1970 J. Chem. Phys. 52 2992Google Scholar

    [34]

    Bialski M, Grein F 1976 J. Mol. Spectrosc. 61 321Google Scholar

    [35]

    Karna S P, Grein F 1986 J. Mol. Spectrosc. 120 284Google Scholar

    [36]

    Karna S P, Bruna P J, Grein F 1988 J. Phys. B:At. Mol. Opt. Phys. 21 1303Google Scholar

    [37]

    Karna S P, Grein F 1992 Mol. Phys. 77 135Google Scholar

    [38]

    Chong D P 1994 Chem. Phys. Lett. 220 102Google Scholar

    [39]

    Moussaoui Y, Ouamerali O, De Maré G R 1998 J Mol. Struct. Theochem. 425 237Google Scholar

    [40]

    Kalcher J 2002 Phys. Chem. Chem. Phys. 4 3311Google Scholar

    [41]

    Peebles L R, Marshall P 2002 Chem. Phys. Lett. 366 520Google Scholar

    [42]

    Czernek J, Živný O 2004 Chem. Phys. 303 137Google Scholar

    [43]

    Yaghlane S B, Francisco J S, Hochlaf M 2012 J. Chem. Phys. 136 244309Google Scholar

    [44]

    Yang, J, Kang Y, Wang X, Bai X 2013 J. Mol. Model 19 5199Google Scholar

    [45]

    Lingott R M, Liebermann H P, Alekseyev A B, Buenker R J 1999 J. Chem. Phys. 110 11294Google Scholar

    [46]

    Shi D H, Xing W, Sun J F, Zhu Z L 2012 Eur. Phys. J. D 66 173Google Scholar

    [47]

    Gao Y F, Gao T, Gong M 2013 J Quant. Spectrosc. Radiat. Transf. 129 193Google Scholar

    [48]

    刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略 2013 物理学报 62 203104Google Scholar

    Liu H, Xing W, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 203104Google Scholar

    [49]

    Shi D H, Song Z Y, Niu X H, Sun J F, Zhu Z L 2016 Spectrochim. Acta A Mol. Biomol. Spectrosc. 153 30Google Scholar

    [50]

    Prajapat L, Jagoda P, Lodi L, Gorman M N, Yurchenko S N, Tennyson J 2017 MNRAS 472 3648Google Scholar

    [51]

    Zhou D, Shi D H, Sun J F 2019 J. Quant. Spectrosc. Radiat. Transf. 230 120Google Scholar

    [52]

    de Almeida A A, Andreazza C M, Borin A C 2020 Theor. Chem. Acc. 139 33Google Scholar

    [53]

    Reddy R R, Reddy A S R, Rao T V R 1985 Pramana 25 187Google Scholar

    [54]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [55]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [56]

    Peterson K A, Dunning Jr. T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [57]

    Peterson K A, Yousaf K E 2010 J. Chem. Phys. 133 174116Google Scholar

    [58]

    Murrell J N, Sorbie K S 1974 J. Chem. Soc. Faraday Trans. 2 1552

    [59]

    李松, 韩立波, 陈善俊, 段传喜 2013 物理学报 62 113102Google Scholar

    Li S, Han L B, Chen S J, Duan C X 2013 Acta Phys. Sin. 62 113102Google Scholar

    [60]

    Li S, Chen S J, Zhu D S, Fan Q C 2013 Comput. Theor. Chem. 1017 136Google Scholar

    [61]

    Lu N, Wu W Q, Zhang C Z, Wan M J, Jin Y Y, Zhang W B, Chen S J, Li S 2020 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 237 118301Google Scholar

    [62]

    Li S, Chen S J, Chen Y, Chen P 2016 Chin. Phys. B. 25 033101Google Scholar

    [63]

    Chen P, Wang N, Li S, Chen S J 2017 J. Quant. Spectrosc. Radiat. Transf. 201 104Google Scholar

    [64]

    万明杰, 李松, 金成国, 罗华锋 2019 物理学报 68 063103Google Scholar

    Wan M J, Li S, Jin C G, Luo H F 2019 Acta Phys. Sin. 68 063103Google Scholar

    [65]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [66]

    Werner H J, Knowles P J, Knizia G, et al. MOLPRO, version 2015.1, A Package of ab initio Programs, 2015

    [67]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transf. 186 167Google Scholar

    [68]

    Sansonetti J E, Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559Google Scholar

  • 图 1  SbS的Λ-S态势能曲线 (a)二重、六重态; (b), (c)四重态

    Fig. 1.  Potential energy curves of Λ-S states of SbS: (a) Doublet and sextet states; (b), (c) quartet states.

    图 2  SbS的Ω态势能曲线

    Fig. 2.  Potential energy curves of Ω states of SbS.

    图 3  SbS的振动谱带

    Fig. 3.  Vibrational transition bands of SbS.

    表 1  SbS的Λ-S态离解极限

    Table 1.  Dissociation relationships of the Λ-S states of SbS.

    原子态Λ-S态ΔE/cm–1
    实验值[68]计算值
    $ {\text{Sb}}({}^4{{\text{S}}_{\text{u}}}) + {\text{S}}{(^3}{{\text{P}}_{\text{g}}}) $${{\text{1}}^2}{\Sigma ^ + }$, ${{\rm X}^2}\Pi $ , ${{\text{1}}^4}{\Sigma ^ + }$, ${{\text{1}}^4}\prod $, ${{\text{1}}^6}{\Sigma ^ + }$, $ {1^6}\Pi $00
    $ {\text{Sb}}({}^4{{\text{S}}_{\text{u}}}) + {\text{S}}{(^1}{{\text{D}}_{\text{g}}}) $${1^4}{\Sigma ^ - }$, ${1^4}\Delta $, $2{}^4\Pi $9238.6099346
    $ {\text{Sb}}({}^2{{\text{D}}_{\text{u}}}) + {\text{S}}{(^3}{{\text{P}}_{\text{g}}}) $${2^2}{\Sigma ^ + }$, ${3^2}{\Sigma ^ + }$, ${1^2}{\Sigma ^ - }$, ${1^2}\Delta $, ${2^2}\Delta $, $2{}^2\Pi $, $3{}^2\Pi $, $4{}^2\Pi $, ${1^2}\Phi $,
    ${2^4}{\Sigma ^ + }$, ${3^4}{\Sigma ^ + }$, ${2^4}{\Sigma ^ - }$, ${2^4}\Delta $, ${3^4}\Delta $, $3{}^4\Pi $, $4{}^4\Pi $, $5{}^4\Pi $, ${1^4}\Phi $
    9854.01810022
    下载: 导出CSV

    表 2  SbS的Λ-S态光谱常数

    Table 2.  Spectroscopic constants of the Λ-S states of SbS.

    Λ-S态ReDe/eVBe/cm–1ωe/cm–1ωeχe /cm–1Te/cm–1RMS/cm–1电子组态(组态系数)
    ${{\text{X}}^{\text{2}}}\Pi $2.21993.440.1348479.81.5100.5715σαβxαβyαβxα (72.77)
    ${1^4}\Pi $2.44811.840.1108343.61.17128840.6515σαβxαβyαxαyα (84.83)
    ${{\text{2}}^{\text{2}}}\Pi $2.43882.600.1117356.30.89167210.6415σαβxαβyβxαyα (52.26)
    ${{\text{3}}^{\text{2}}}\Pi $2.45132.160.1106341.80.97203060.8815σαβxαβyαxαyβ (31.90)
    ${1^4}{\Sigma ^ - }$2.33541.880.1218361.12.54218701.5315σαxαβyαβxαyα (83.08)
    ${4^{\text{2}}}\Pi $2.45541.490.1109341.11.97257962.8515σαβxαyαβyαβ (59.44)
    ${{\text{1}}^{\text{2}}}{\Sigma ^ + }$第一势阱2.46990.450.1089254.40.88261853.6415σαβ16σαxαβyαβ (52.15)
    ${1^{\text{2}}}{\Sigma ^ - }$2.37351.170.1179340.16.30283507.0315σαxαβyαβxβyα (61.23)
    ${1^{\text{2}}}\Delta $2.35451.040.1198343.52.51292711.8015σαxαβyαβxαyβ (60.01)
    ${1^2}\Phi $2.54971.450.1022265.11.96325086.6315σαβxαyαxαβyβ(50.92)
    ${2^{\text{2}}}{\Sigma ^ + }$2.36780.630.1185337.01.73332502.1915σαxαβyαβyαβ (38.05)
    15σαxαβyαβxαβ (38.05)
    ${1^4}\Delta $2.84620.340.0820188.32.40343890.8415σαβ16σαxαβyαyα (35.39)
    15σαβ16σαxαyαβxα (35.39)
    ${2^4}\Pi $3.35550.280.0590134.11.52347910.3815σα16σαxαβyβxαyα (27.31)
    ${3^{\text{2}}}{\Sigma ^ + }$3.04780.320.0715189.74.99365543.7915σαxαβyαβyαβ (16.85)
    15σαxαβyαβxαβ (16.85)
    ${2^4}{\Sigma ^ + }$3.45740.090.055687.11.80370470.8415σαxαyαβxαyαβ (14.08)
    15σαxαβyαxαβyα (14.08)
    ${2^4}{\Sigma ^ - }$第一势阱2.83560.060.0826184.46.87372601.0115σαβ16σαxαyαβyα (35.84)
    15σαβ16σαxαβyαxα (35.84)
    ${2^4}\Delta $3.95700.050.042495.37.03373390.9615σα16σαβxαyαβxα (17.70)
    15σα16σαβxαβyαyα (17.70)
    下载: 导出CSV

    表 3  XS (X = N, P, As, Sb, Bi)自由基电子基态${{\text{X}}^{\text{2}}}\Pi $的光谱常数

    Table 3.  Spectroscopic constants of the ground state ${{\text{X}}^{\text{2}}}\Pi $of XS (X = N, P, As, Sb, Bi) radicals.

    ReDe/eVωe/cm–1Be/cm–1
    理论值[35] a1.5151220.50.7542
    理论值[40] b1.50581202.40.742
    NS理论值[46] c1.49624.85041216.170.77323
    理论值[47] d1.4981220.90.7715
    实验值[9]1.495(7)0.7736(4)
    实验值[11]1.4938(2)
    理论值[36] e1.944735.60.2836
    理论值[40] b1.9148728.00.292
    理论值[43] f1.879732.00.2936
    PS理论值[48] g1.89724.5272741.00.2979
    理论值[52] h1.918708
    实验值[15]1.92739.50.29
    实验值[18]1.900(7)
    实验值[21]1.8977405(45)739.13
    (42)
    0.2975216
    (14)
    本文工作1.90144.41739.50.2960
    理论值[53] i4.15(13)
    理论值[40] b2.0395559.20.181
    AsS理论值[44] j2.0453.94
    理论值[49] k2.01804.0554565.190.18472
    实验值[28]2.0174567.940.18476
    本文工作2.02083.83564.40.1839
    SbS本文工作2.21993.44479.80.1348
    BiS本文工作2.31183.12424.90.1135
    注: a MRSDCI/modified basis sets; b CAS-ACPF/cc-pVQZ; c MRCI+Q/AV5Z+CV+DK; d MRCI+Q/aug-cc-pV5Z; e MRSDCI/modified basis sets; f MRCI/aug-cc-pV5Z; g MRCI+Q/56+CV+DK; h MRCI/modified basis sets; i Obtained from the RKR method; j MP2(full)/6-31G(d); k MRCI+Q/Q5+CV+DK.
    下载: 导出CSV

    表 4  SbS自由基Ω态的离解极限

    Table 4.  Dissociation relationships of the Ω states of SbS.

    原子态Ω态ΔE/cm–1
    实验值[68]本文计算值
    $\rm {{Sb} }({}^4{ {{S} }_{ {3/2} } }) + {{S} }{(^3}{ {{P} }_2})$7/2, 5/2(2),
    3/2(3), 1/2(4)
    00
    $\rm{{Sb} }({}^4{ {{S} }_{ {3/ } 2} }) + {{S} }{(^3}{ {{P} }_1})$5/2, 3/2(2),
    1/2(3)
    396.055410.46
    $\rm {{Sb} }({}^4{ {{S} }_{ {3/2} } }) + {{S} }{(^3}{ {{P} }_0})$3/2, 1/2573.640605.81
    下载: 导出CSV

    表 5  SbS自由基的Ω态光谱常数

    Table 5.  Spectroscopic constants of the Ω states of SbS.

    Ω态ReDe/eVBe/cm–1ωe/cm–1ωeχe/cm–1Te/cm–1RMS/cm–1
    X(1/2)2.21953.620.1348476.31.3602.36
    实验值[7]4801.2
    X(3/2)2.22013.360.1348477.31.9720252.25
    实验值[7]4701.6
    2(1/2)2.45271.930.1104341.40.43136462.70
    3(1/2)2.45381.900.1103342.20.62138882.28
    2(3/2)2.45031.860.1106346.51.17141230.30
    1(5/2)2.45371.830.1103344.61.16143460.38
    3(3/2)2.44282.560.1113364.71.46176322.94
    4(1/2)2.44672.480.1110367.32.46183409.74
    4(3/2)2.45242.180.1105339.70.41214133.17
    5(1/2)2.45602.130.1101342.81.03216102.17
    6(1/2)2.34621.950.1207352.31.41229476.01
    5(3/2)2.34761.910.1205356.62.74232688.04
    下载: 导出CSV

    表 6  XS (X = N, P, As, Sb, Bi)自由基Ω基态的光谱常数

    Table 6.  Spectroscopic constants of the ground Ω state of XS (X = N, P, As, Sb, Bi) radicals.

    Ω态ReDe/eVωe/cm–1Be/cm–1Te/cm–1
    NS
    X(1/2)理论值[46] a1.49624.85621216.430.773200
    理论值[51] b1.49764.75861213.300
    实验值[12]1.49551219.140.77300
    实验值[13]1.49551218.970.77300
    实验值[14]1.49311218.10.7758(11)0
    X(3/2)理论值[46] a1.49624.84461215.930.77326223.64
    理论值[51] b1.49754.74121213.02221.67
    实验值[12]1.49011218.900.7777223.15
    实验值[13]1.49011218.900.7777222.98
    实验值[14]1.48841218.00.7807(2)220.4
    PS
    X(1/2)实验值[19]1.899739.54(2)0.29724(5)0
    本文工作1.90154.40738.80.29600
    X(3/2)实验值[19]1.8974.566739.45(2)0.29765(5)321.93
    本文工作1.90144.37738.60.2960324.8
    AsS
    X(1/2)实验值[24]567.9(4)0.184760
    本文工作2.02063.89565.60.18390
    X(3/2)实验值[24]2.0174566.1(3)0.18492
    实验值[25]2.0216(3)562.40(16)0.18408(4)
    本文工作2.02103.78563.30.1838893.3
    SbS
    X(1/2)本文工作2.21953.62476.30.13480
    X(3/2)本文工作2.22013.36477.30.13482025.0
    BiS
    X(1/2)理论值[45] c2.3654070
    实验值[29]2.3194408.710.113010
    实验值[30]2.3122(10)404.68(8)0.11371(10)0
    实验值[31]2.3188(1)408.67(7)0.113063(10)0
    实验值[32]408.66(3)0
    本文工作2.31313.58429.50.11340
    X(3/2)理论值[45] c2.3614047076
    实验值[31]2.31525(13)403.95(21)0.113411(13)6905.02(18)
    实验值[32]2.31489(11)404.501(94)
    本文工作2.31912.87413.80.11285781
    注: a MRCI+Q/AV5Z+CV+DK+SO; b MRCI+Q/56+CV+DK+SO; c MRDCI+Q/modified basis sets.
    下载: 导出CSV

    表 7  SbS的Λ-S及其对应Ω态的振动能级、转动常数和离心畸变常数(单位: cm–1)

    Table 7.  Vibrational energy levels, rotational constants and centrifugal distortion constants for the Ω and its respective Λ-S states of SbS (in cm–1).

    vGvBv108DvGvBv108DvGvBv108Dv
    X(1/2)X(3/2)${\text{X}}{}^2\Pi $
    0205.30.13504.30200.70.13494.37212.40.13514.18
    1682.70.13454.32673.60.13444.39696.40.13444.38
    21156.90.13404.321143.10.13384.401171.80.13394.40
    31628.20.13344.331609.40.13324.411642.20.13344.32
    42096.60.13294.352072.60.13274.442110.00.13284.28
    52561.90.13234.392532.60.13214.482575.70.13234.31
    3(3/2)4(1/2)${2^2}\Pi $
    0160.50.11184.32165.50.11134.44153.70.11194.42
    1519.50.11144.31517.20.11094.44508.80.11144.38
    2876.80.11094.29866.90.11044.42862.30.11084.37
    31232.50.11054.291214.70.11004.431214.10.11044.33
    41586.40.11014.321560.60.10954.461564.30.10994.34
    51938.30.10974.341904.30.10904.491912.90.10954.35
    4(3/2)5(1/2)${3^2}\Pi $
    0169.70.11064.58170.60.11034.59163.40.11084.73
    1512.30.11014.59511.80.10984.60501.10.11024.54
    2852.60.10964.59850.70.10934.60839.60.10964.57
    31190.70.10914.601187.40.10894.611176.70.10914.58
    41526.50.10864.621521.90.10844.631512.00.10864.61
    51860.00.10814.621854.00.10794.641845.00.10814.64
    6(1/2)5(3/2)${1^4}{\Sigma ^ - }$
    0131.60.12045.73128.30.12035.80151.10.12155.33
    1479.40.11975.60473.60.11965.72517.90.12145.42
    2826.20.11905.66817.00.11895.75881.00.12046.22
    31170.20.11835.851157.70.11825.861230.60.11946.24
    41510.20.11775.911494.90.11755.911571.70.11865.89
    51846.60.11715.661828.60.11695.821909.20.11795.87
    2(1/2)3(1/2)$1{}^4\Pi $
    0170.10.11064.55170.30.11064.55160.20.11114.73
    1514.30.11024.55514.00.11014.56499.20.11044.56
    2856.30.10974.56855.50.10964.57838.70.10994.63
    31196.00.10924.571194.70.10914.581176.20.10944.65
    41533.50.10874.581531.60.10864.591511.40.10894.67
    51868.70.10824.581866.20.10814.601844.20.10844.69
    2(3/2)1(5/2)
    0168.80.11084.56170.40.11054.57
    1513.40.11034.57513.20.11004.58
    2855.60.10984.58853.60.10954.58
    31195.50.10934.591191.70.10904.60
    41533.00.10884.601527.50.10854.61
    51868.20.10834.611860.80.10804.62
    下载: 导出CSV

    表 8  XS (X = P, As, Bi)自由基Ω基态的振动能级、转动常数和离心畸变常数(单位: cm–1)

    Table 8.  Vibrational energy levels, rotational constants and centrifugal distortion constants for the ground Ω state of XS (X = P, As, Bi) radicals (in cm–1).

    vGvBv107DvGvBv107DvvGvBv108Dv
    PS X(1/2)PS X(3/2)AsS X(3/2)
    0368.40.295501.91368.20.295511.9131952.30.181087.90
    0.29649 a1.85 a0.29695 a1.9 a0.18116(8) b8.6(5) b
    11101.30.293941.921100.80.293941.9242501.20.180247.93
    0.29469 a1.7 a0.29543 a1.8 a0.18033(4) b8.7(8) b
    21828.20.292371.921827.20.292371.9253046.00.179397.93
    0.29333 a1.9 a0.29385 a2.0 a0.17950(4) b8.8(7) b
    32549.00.290781.922547.60.290781.9263587.00.178537.89
    0.29161 a1.85 a0.29223 a1.95 a0.17865(5) b9.1(9) b
    43264.00.289181.923262.20.289171.9374124.10.177657.85
    0.29015 a1.9 a0.29065 a1.8 a0.17782(4) b9.7(8) b
    53973.20.287561.933971.00.287551.93
    0.28855 a2.0 a0.28933 a1.8 aBiS X(1/2)
    64676.70.285951.944674.00.285941.940213.90.113443.19
    0.28710 a1.9 a0.28740 a2.0 a0.112764(5) c3.34(4) c
    75374.20.284341.955371.00.284321.951641.00.113023.19
    0.28653 a1.7 a21065.60.112603.19
    86065.70.282731.966061.90.282711.9631488.00.112183.20
    0.28416 a2.0 a
    注: a为文献[19]实验值; b为文献[25]实验值; c为文献[29]实验值.
    下载: 导出CSV
  • [1]

    Lian W T, Jiang C H, Yin Y W, Tang R F, Li G, Zhang L J, Che B, Chen T 2021 Nat. Commun. 12 3260Google Scholar

    [2]

    Zhao R M, Yang X L, Shi H L, Du M H 2021 Phys. Rev. Mater. 5 054605Google Scholar

    [3]

    Yang Y, Shi C W, Lv K, Wang Q, Sun X, Chen W C 2021 New J. Chem. 45 10357Google Scholar

    [4]

    Y Grad L, von Rohr F O, Hengsberger M, Osterwalder J 2021 Phys. Rev. Mater. 5 075401Google Scholar

    [5]

    Hu X K, Ma Y X, Pang Z X, Li P 2019 Chem. Phys. 523 110Google Scholar

    [6]

    Zhang J W, Lian W T, Yin Y W, et al. 2020 Solar RRL 4 2000048Google Scholar

    [7]

    Shimauchi M, Nishiyama Y 1968 Sci. Light 17 76

    [8]

    Fowler A, Bakker C J 1932 Proc. Roy. Soc. (London) A 136 28

    [9]

    Zeeman P B 1951 Can. J Phys. 29 174Google Scholar

    [10]

    Barrow R F, Drummond G, Zeeman P B 1954 Proc. Roy. Soc. (London) A 67 365

    [11]

    Amano T, Saito S, Hirota E, Morino Y 1969 J. Mol. Spectrosc. 32 97Google Scholar

    [12]

    Jenouvrier A, Pascat B 1973 Can. J. Phys. 51 2143Google Scholar

    [13]

    Jenouvrier A, Pascat B 1980 Can. J. Phys. 58 1275Google Scholar

    [14]

    Wang T T, Li C Y, Zheng X F, Chen Y 2007 Chin. Sci. Bull. 52 596Google Scholar

    [15]

    Dressler K, Miescher E 1955 Proc. Roy. Soc. (London) A 68 542Google Scholar

    [16]

    Dressler K 1955 Ph. D. Dissertation (Basel: Universität Basel)

    [17]

    Narasimham N A, Subramanian T K B 1969 J. Mol. Spectrosc. 29 294Google Scholar

    [18]

    Narasimham N A, Subramanian T K B 1971 J. Mol. Spectrosc. 37 371Google Scholar

    [19]

    Jenouvrier A, Pascat B 1978 Can. J. Phys. 56 1088Google Scholar

    [20]

    Balasubramanian T K, Dixit M N, Narasimham N A 1979 Pramana 12 707Google Scholar

    [21]

    Kawaguchi K, Hirota E, Ohishi M, Suzuki H, Takano S, Yamamoto S, Saito S 1988 J. Mol. Spectrosc. 130 81Google Scholar

    [22]

    Ohishi M, Yamamoto S, Saito S, et al. 1988 Astrophys. J 329 511Google Scholar

    [23]

    Klein H, Klisch E, Winnewisser G 1999 Z. Naturforschung A 54 137Google Scholar

    [24]

    Shimauchi M, 1969 Sci. Light 18 90

    [25]

    Shimauchi M, 1971 Can. J. Phys. 49 1249Google Scholar

    [26]

    Shimauchi M, Sakaba Y, Kikuchi S 1972 Sci. Light 21 1

    [27]

    Shimauchi M, Iwata H, Matsuno T, Sakaba Y, Lee S K, Karasawa S 1972 Sci. Light 21 145

    [28]

    Shimauchi M, Karasawa S 1973 Sci. Light 22 127

    [29]

    Barrow R F, Stobart O V, Vaughan H 1967 Proc. Phys. Soc. Lond. 90 555Google Scholar

    [30]

    Patiño P, Eland J H D, Barrow R F 1984 J. Phys. B:At. Mol. Phys. 17 1009Google Scholar

    [31]

    Izumi K, Cohen E A, Setzer K D, Fink E H, Kawaguchi K 2008 J. Mol. Spectrosc. 252 198Google Scholar

    [32]

    Setzer K D, Meinecke F, Fink E H 2009 J. Mol. Spectrosc. 258 56Google Scholar

    [33]

    O’Hare P A G 1970 J. Chem. Phys. 52 2992Google Scholar

    [34]

    Bialski M, Grein F 1976 J. Mol. Spectrosc. 61 321Google Scholar

    [35]

    Karna S P, Grein F 1986 J. Mol. Spectrosc. 120 284Google Scholar

    [36]

    Karna S P, Bruna P J, Grein F 1988 J. Phys. B:At. Mol. Opt. Phys. 21 1303Google Scholar

    [37]

    Karna S P, Grein F 1992 Mol. Phys. 77 135Google Scholar

    [38]

    Chong D P 1994 Chem. Phys. Lett. 220 102Google Scholar

    [39]

    Moussaoui Y, Ouamerali O, De Maré G R 1998 J Mol. Struct. Theochem. 425 237Google Scholar

    [40]

    Kalcher J 2002 Phys. Chem. Chem. Phys. 4 3311Google Scholar

    [41]

    Peebles L R, Marshall P 2002 Chem. Phys. Lett. 366 520Google Scholar

    [42]

    Czernek J, Živný O 2004 Chem. Phys. 303 137Google Scholar

    [43]

    Yaghlane S B, Francisco J S, Hochlaf M 2012 J. Chem. Phys. 136 244309Google Scholar

    [44]

    Yang, J, Kang Y, Wang X, Bai X 2013 J. Mol. Model 19 5199Google Scholar

    [45]

    Lingott R M, Liebermann H P, Alekseyev A B, Buenker R J 1999 J. Chem. Phys. 110 11294Google Scholar

    [46]

    Shi D H, Xing W, Sun J F, Zhu Z L 2012 Eur. Phys. J. D 66 173Google Scholar

    [47]

    Gao Y F, Gao T, Gong M 2013 J Quant. Spectrosc. Radiat. Transf. 129 193Google Scholar

    [48]

    刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略 2013 物理学报 62 203104Google Scholar

    Liu H, Xing W, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 203104Google Scholar

    [49]

    Shi D H, Song Z Y, Niu X H, Sun J F, Zhu Z L 2016 Spectrochim. Acta A Mol. Biomol. Spectrosc. 153 30Google Scholar

    [50]

    Prajapat L, Jagoda P, Lodi L, Gorman M N, Yurchenko S N, Tennyson J 2017 MNRAS 472 3648Google Scholar

    [51]

    Zhou D, Shi D H, Sun J F 2019 J. Quant. Spectrosc. Radiat. Transf. 230 120Google Scholar

    [52]

    de Almeida A A, Andreazza C M, Borin A C 2020 Theor. Chem. Acc. 139 33Google Scholar

    [53]

    Reddy R R, Reddy A S R, Rao T V R 1985 Pramana 25 187Google Scholar

    [54]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [55]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [56]

    Peterson K A, Dunning Jr. T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [57]

    Peterson K A, Yousaf K E 2010 J. Chem. Phys. 133 174116Google Scholar

    [58]

    Murrell J N, Sorbie K S 1974 J. Chem. Soc. Faraday Trans. 2 1552

    [59]

    李松, 韩立波, 陈善俊, 段传喜 2013 物理学报 62 113102Google Scholar

    Li S, Han L B, Chen S J, Duan C X 2013 Acta Phys. Sin. 62 113102Google Scholar

    [60]

    Li S, Chen S J, Zhu D S, Fan Q C 2013 Comput. Theor. Chem. 1017 136Google Scholar

    [61]

    Lu N, Wu W Q, Zhang C Z, Wan M J, Jin Y Y, Zhang W B, Chen S J, Li S 2020 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 237 118301Google Scholar

    [62]

    Li S, Chen S J, Chen Y, Chen P 2016 Chin. Phys. B. 25 033101Google Scholar

    [63]

    Chen P, Wang N, Li S, Chen S J 2017 J. Quant. Spectrosc. Radiat. Transf. 201 104Google Scholar

    [64]

    万明杰, 李松, 金成国, 罗华锋 2019 物理学报 68 063103Google Scholar

    Wan M J, Li S, Jin C G, Luo H F 2019 Acta Phys. Sin. 68 063103Google Scholar

    [65]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [66]

    Werner H J, Knowles P J, Knizia G, et al. MOLPRO, version 2015.1, A Package of ab initio Programs, 2015

    [67]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transf. 186 167Google Scholar

    [68]

    Sansonetti J E, Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559Google Scholar

  • [1] 刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮. 含自旋-轨道耦合的$ {{\bf{O}}}_{2}^{ - } $光谱常数计算. 物理学报, 2025, 74(2): 023101. doi: 10.7498/aps.74.20241435
    [2] 张志宇, 赵阳, 青波, 张继彦, 马建毅, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质电子结构密度效应研究. 物理学报, 2023, 72(24): 245201. doi: 10.7498/aps.72.20231215
    [3] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl阴离子的光谱性质和跃迁性质. 物理学报, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [4] 侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰. AsH+离子的电子结构和跃迁性质. 物理学报, 2022, 71(21): 213101. doi: 10.7498/aps.71.20221104
    [5] 侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰. AsH+离子的电子结构和跃迁性质. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221104
    [6] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [7] 万明杰, 柳福提, 黄多辉. 考虑自旋-轨道耦合效应下SeH阴离子的光谱和跃迁性质. 物理学报, 2021, 70(3): 033101. doi: 10.7498/aps.70.20201413
    [8] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl-阴离子的光谱性质和跃迁性质. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211688
    [9] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松. SbS 电子基态及激发态的势能曲线和振动能级的理论研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211441
    [10] 滑亚文, 刘以良, 万明杰. SeH+离子低激发态的电子结构和跃迁性质的理论研究. 物理学报, 2020, 69(15): 153101. doi: 10.7498/aps.69.20200278
    [11] 邢伟, 孙金锋, 施德恒, 朱遵略. icMRCI+Q理论研究BF+离子电子态的光谱性质和预解离机理. 物理学报, 2018, 67(6): 063301. doi: 10.7498/aps.67.20172114
    [12] 魏长立, 廖浩, 罗太盛, 任银拴, 闫冰. Na2+离子较低电子态势能曲线和光谱常数的理论研究. 物理学报, 2018, 67(24): 243101. doi: 10.7498/aps.67.20181690
    [13] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略, 吕淑霞. 一氟化碳电子态的光谱性质和预解离机理的理论研究. 物理学报, 2015, 64(15): 153101. doi: 10.7498/aps.64.153101
    [14] 吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波. 硫化锡电子结构和光学性质的量子尺寸效应. 物理学报, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [15] 李桂霞, 姜永超, 凌翠翠, 马红章, 李鹏. HF+离子在旋轨耦合作用下电子态的特性. 物理学报, 2014, 63(12): 127102. doi: 10.7498/aps.63.127102
    [16] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. AlC分子 X4∑-和B4∑-电子态的光谱性质. 物理学报, 2013, 62(11): 113101. doi: 10.7498/aps.62.113101
    [17] 王杰敏, 冯恒强, 孙金锋, 施德恒, 李文涛, 朱遵略. SiN自由基X2+, A2和B2+ 电子态的光谱常数研究. 物理学报, 2013, 62(1): 013105. doi: 10.7498/aps.62.013105
    [18] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [19] 张昌文, 李 华, 董建敏, 王永娟, 潘凤春, 郭永权, 李 卫. 化合物SmCo5的电子结构、自旋和轨道磁矩及其交换作用分析. 物理学报, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [20] 徐海峰, 郭颖, 李奇峰, 戴静华, 刘世林, 马兴孝. N2O+离子A2Σ+电子态的光谱研究. 物理学报, 2004, 53(4): 1027-1033. doi: 10.7498/aps.53.1027
计量
  • 文章访问数:  7351
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-05
  • 修回日期:  2021-09-17
  • 上网日期:  2022-01-13
  • 刊出日期:  2022-01-20

/

返回文章
返回