-
采用高精度的多参考组态相互作用方法研究了ICl+分子离子的电子结构。在计算过程中,通过考虑Davidson修正、自旋-轨道耦合效应和芯-价电子关联提高计算结果的准确性。获得了两条能量最低的解离极限相关的21个Λ-S态和42个Ω态势能曲线。在计算的势能曲线基础上,拟合了束缚态的光谱常数,这些理论光谱常数与已知的实验结果吻合较好。研究了ICl+分子离子的偶极矩,并通过相同对称性电子态22Σ+/32Σ+和22Π/32Π在交叉区域中主要电子组态成分的变化阐明了偶极矩的变化规律。计算了与22Π、32Π、12Δ、22Δ态相关的自旋-轨道耦合矩阵元。借助于22Π、32Π、12Δ、22Δ态及邻近电子态的势能曲线,讨论了相应的预解离通道。最后对ICl+分子离子激发态至基态的跃迁性质展开了研究。基于计算所得的跃迁偶极矩和Franck-Condon因子,给出了激发态较低振动能级的自发辐射寿命。本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00140中访问获取。The electronic structure of the ICl+ molecular ion were investigated by using high-level multireference configuration interaction (MRCI) methods. To improve computational accuracy, Davidson corrections, spin-orbit coupling (SOC), and core-valence electron correlations effects were incorporated in the calculations. The potential energy curves (PECs) of 21 Λ-S states associated with the two lowest dissociation limits I+(1Dg)+Cl(2Pu) and I+(3Pg)+Cl(2Pu) were obtained. The dipole moments (DMs) of the 21 Λ-S states of ICl+ were systematically studied, and the variation of DMs of the identical symmetry state (22Σ+/32Σ+ and 22Π/32Π) in the avoided crossing regions are elucidated through the analysis of dominant electronic configuration. When considering the SOC effect, the Λ-S states with the same Ω components may form new avoided crossing point, making the PECs more complex. With the help of calculated SOC matrix element, the interaction between crossing states can be illuminated. Spin-orbit coupling matrix elements involving the 22Π, 32Π, 12Δ and 22Δ states were calculated. By analyzing potential energy curves of these states and the nearby electronic states, the possible predissociation channels for 22Π, 32Π, 12Δ and 22Δ states were provided. Based on the computed PECs, the spectroscopic constants of bound Λ-S and Ω states were determined. Comparing the spectroscopic constants of Λ-S and Ω states, we can find that SOC effect has obvious correction on the spectroscopic properties of low-lying states. Finally, the transition properties between excited states and the ground state were studied. Based on the computed transition dipole moments and Franck-Condon factors, radiative lifetimes for the low-lying vibrational levels of excited states were evaluated. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j 00213.00140.
-
Keywords:
- ICl+ /
- MRCI+Q method /
- Spectroscopic constants /
- Spin-orbit coupling /
- Radiative lifetimes
-
[1] Sherwen T, Schmidt J A, Evans M J, Carpenter L J, Großmann K, Eastham S D, Jacob D J, Dix B, Koenig T K, Sinreich R, Ortega I, Volkamer R, Saiz-Lopez A, Prados-Roman C, Mahajan A S, Ordóñez C 2016 Atmos. Chem. Phys. 16 12239.
[2] Vogt R, Sander R, Glasow R V, Crutzen P J 1999 J. Atmos. Chem. 32 375.
[3] Calvert J G, Lindberg S E 2004 Atmos. Environ. 38 5087.
[4] Küpper F C, Feiters M C, Olofsson B, Kaiho T, Yanagida S, Zimmermann M B, Carpenter L J, Luther G W, Lu Z, Jonsson M, Kloo L 2011 Angew. Chem. Int. Ed. 50 11598.
[5] Evans S, Orchard A F 1971 Inorg. Chim. Acta. 5 81.
[6] Potts A W, Price W C 1971 Trans. Faraday Soc. 67 1242.
[7] Eland J H D 1979 J. Chem. Phys. 70 2926.
[8] Dibeler V H, Walker J A, McCulloh K E, Rosenstock H M 1971 Int. J.Mass Spectro. Ion Phys. 7 209.
[9] Venkateswarlu P 1975 Can. J. Phys. 53 812.
[10] Tuckett R P, Castellucci E, Bonneau M 1985 Chem. Phys. 92 43.
[11] Kaur D, Yencha A J, Donovan R J, Kvaran A, Hopkirk A 1993 Org. Mass Spectrom. 28 327.
[12] Yencha A J, Lopes M C A, King G C 2000 Chem. Phys. Lett. 325 559.
[13] Ridley T, Beattie D A, Cockett M C R, Lawley K P, Donovan R J 2002 Phys. Chem. Chem. Phys. 4 1398.
[14] Straub P A, McLean A D 1974 Theoret. Chim. Acta 32 227.
[15] Dyke J M, Josland G D, Snijders J G, Boerrigter P M 1984 Chem. Phys. 91 419.
[16] Balasubramanian K 1985 Chem. Phys. 95 225.
[17] Werner H, Knowles P J, Knizia G, Manby F R, Schütz M 2012 Wires Comput. Mol. Sci. 2 242.
[18] Peterson K A, Yousaf K E 2010 J. Chem. Phys. 133 174116.
[19] Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548.
[20] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259.
[21] Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053.
[22] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514.
[23] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803.
[24] Langhoff S R, Davidson E R 1974 Int. J. Quantum. Chem. 8 61.
[25] Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823.
[26] Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167.
[27] Wu D L, Liu B K, Zhou W T, Chen J Y, Lai Z L, Liu B, Yan B 2025 Chin. Phys. B. 34 043101.
[28] Liu M J, Tian Y L, Wang Y, Li X X, He X H, Gong T, Sun X C, Guo G Q, Qiu X B, Li C L 2025 Acta Phys. Sin. 74 023101 (in Chinese)[刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮 2025 物理学报 74 023101]
[29] Zhu Y H, Li R 2024 Acta Phys. Sin. 73 053101 (in Chinese)[朱宇豪, 李瑞 2024 物理学报 73 053101]
[30] Li R, Lv H N, Sang J Q, Liu X H , Liang G Y 2024 Chin. Phys. B. 33 053101.
[31] Wu D L, Guo Z Y, Zhou J J, Ruan W, Zeng X F, Xie A D 2022 Acta Phys. Sin. 71 223101 (in Chinese)[伍冬兰, 郭自依, 周俊杰, 阮文, 曾学锋, 谢安东 2022 物理学报 71 223101]
[32] Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102 (in Chinese)[陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国 2022 物理学报 71 143102]
[33] Huber K P, Herzberg G 1979 Molecular spectra and molecular structure (Vol. IV) (New York: Van Nostrand Reinhold) 342.
[34] Moore C E 1971 Atomic energy levels (Washington(DC): National Bureau of Standards Publications).
计量
- 文章访问数: 58
- PDF下载量: 0
- 被引次数: 0