搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ICl+分子离子激发态的包含自旋-轨道耦合效应的理论研究

李瑞 窦荣龙 高婷 李奇楠 宋超群

引用本文:
Citation:

ICl+分子离子激发态的包含自旋-轨道耦合效应的理论研究

李瑞, 窦荣龙, 高婷, 李奇楠, 宋超群

Theoretical study on the excited states of ICl+ molecular ion including spin-orbit coupling

Li Rui, Dou Rong-Long, Gao Ting, Li Qi-Nan, Song Chao-Qun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 采用高精度的多参考组态相互作用方法研究了ICl+分子离子的电子结构。在计算过程中,通过考虑Davidson修正、自旋-轨道耦合效应和芯-价电子关联提高计算结果的准确性。获得了两条能量最低的解离极限相关的21个Λ-S态和42个Ω态势能曲线。在计算的势能曲线基础上,拟合了束缚态的光谱常数,这些理论光谱常数与已知的实验结果吻合较好。研究了ICl+分子离子的偶极矩,并通过相同对称性电子态22Σ+/32Σ+和22Π/32Π在交叉区域中主要电子组态成分的变化阐明了偶极矩的变化规律。计算了与22Π、32Π、12Δ、22Δ态相关的自旋-轨道耦合矩阵元。借助于22Π、32Π、12Δ、22Δ态及邻近电子态的势能曲线,讨论了相应的预解离通道。最后对ICl+分子离子激发态至基态的跃迁性质展开了研究。基于计算所得的跃迁偶极矩和Franck-Condon因子,给出了激发态较低振动能级的自发辐射寿命。本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00140中访问获取。
    The electronic structure of the ICl+ molecular ion were investigated by using high-level multireference configuration interaction (MRCI) methods. To improve computational accuracy, Davidson corrections, spin-orbit coupling (SOC), and core-valence electron correlations effects were incorporated in the calculations. The potential energy curves (PECs) of 21 Λ-S states associated with the two lowest dissociation limits I+(1Dg)+Cl(2Pu) and I+(3Pg)+Cl(2Pu) were obtained. The dipole moments (DMs) of the 21 Λ-S states of ICl+ were systematically studied, and the variation of DMs of the identical symmetry state (22Σ+/32Σ+ and 22Π/32Π) in the avoided crossing regions are elucidated through the analysis of dominant electronic configuration. When considering the SOC effect, the Λ-S states with the same Ω components may form new avoided crossing point, making the PECs more complex. With the help of calculated SOC matrix element, the interaction between crossing states can be illuminated. Spin-orbit coupling matrix elements involving the 22Π, 32Π, 12Δ and 22Δ states were calculated. By analyzing potential energy curves of these states and the nearby electronic states, the possible predissociation channels for 22Π, 32Π, 12Δ and 22Δ states were provided. Based on the computed PECs, the spectroscopic constants of bound Λ-S and Ω states were determined. Comparing the spectroscopic constants of Λ-S and Ω states, we can find that SOC effect has obvious correction on the spectroscopic properties of low-lying states. Finally, the transition properties between excited states and the ground state were studied. Based on the computed transition dipole moments and Franck-Condon factors, radiative lifetimes for the low-lying vibrational levels of excited states were evaluated. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j 00213.00140.
  • [1]

    Sherwen T, Schmidt J A, Evans M J, Carpenter L J, Großmann K, Eastham S D, Jacob D J, Dix B, Koenig T K, Sinreich R, Ortega I, Volkamer R, Saiz-Lopez A, Prados-Roman C, Mahajan A S, Ordóñez C 2016 Atmos. Chem. Phys. 16 12239.

    [2]

    Vogt R, Sander R, Glasow R V, Crutzen P J 1999 J. Atmos. Chem. 32 375.

    [3]

    Calvert J G, Lindberg S E 2004 Atmos. Environ. 38 5087.

    [4]

    Küpper F C, Feiters M C, Olofsson B, Kaiho T, Yanagida S, Zimmermann M B, Carpenter L J, Luther G W, Lu Z, Jonsson M, Kloo L 2011 Angew. Chem. Int. Ed. 50 11598.

    [5]

    Evans S, Orchard A F 1971 Inorg. Chim. Acta. 5 81.

    [6]

    Potts A W, Price W C 1971 Trans. Faraday Soc. 67 1242.

    [7]

    Eland J H D 1979 J. Chem. Phys. 70 2926.

    [8]

    Dibeler V H, Walker J A, McCulloh K E, Rosenstock H M 1971 Int. J.Mass Spectro. Ion Phys. 7 209.

    [9]

    Venkateswarlu P 1975 Can. J. Phys. 53 812.

    [10]

    Tuckett R P, Castellucci E, Bonneau M 1985 Chem. Phys. 92 43.

    [11]

    Kaur D, Yencha A J, Donovan R J, Kvaran A, Hopkirk A 1993 Org. Mass Spectrom. 28 327.

    [12]

    Yencha A J, Lopes M C A, King G C 2000 Chem. Phys. Lett. 325 559.

    [13]

    Ridley T, Beattie D A, Cockett M C R, Lawley K P, Donovan R J 2002 Phys. Chem. Chem. Phys. 4 1398.

    [14]

    Straub P A, McLean A D 1974 Theoret. Chim. Acta 32 227.

    [15]

    Dyke J M, Josland G D, Snijders J G, Boerrigter P M 1984 Chem. Phys. 91 419.

    [16]

    Balasubramanian K 1985 Chem. Phys. 95 225.

    [17]

    Werner H, Knowles P J, Knizia G, Manby F R, Schütz M 2012 Wires Comput. Mol. Sci. 2 242.

    [18]

    Peterson K A, Yousaf K E 2010 J. Chem. Phys. 133 174116.

    [19]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548.

    [20]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259.

    [21]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053.

    [22]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514.

    [23]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803.

    [24]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum. Chem. 8 61.

    [25]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823.

    [26]

    Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167.

    [27]

    Wu D L, Liu B K, Zhou W T, Chen J Y, Lai Z L, Liu B, Yan B 2025 Chin. Phys. B. 34 043101.

    [28]

    Liu M J, Tian Y L, Wang Y, Li X X, He X H, Gong T, Sun X C, Guo G Q, Qiu X B, Li C L 2025 Acta Phys. Sin. 74 023101 (in Chinese)[刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮 2025 物理学报 74 023101]

    [29]

    Zhu Y H, Li R 2024 Acta Phys. Sin. 73 053101 (in Chinese)[朱宇豪, 李瑞 2024 物理学报 73 053101]

    [30]

    Li R, Lv H N, Sang J Q, Liu X H , Liang G Y 2024 Chin. Phys. B. 33 053101.

    [31]

    Wu D L, Guo Z Y, Zhou J J, Ruan W, Zeng X F, Xie A D 2022 Acta Phys. Sin. 71 223101 (in Chinese)[伍冬兰, 郭自依, 周俊杰, 阮文, 曾学锋, 谢安东 2022 物理学报 71 223101]

    [32]

    Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102 (in Chinese)[陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国 2022 物理学报 71 143102]

    [33]

    Huber K P, Herzberg G 1979 Molecular spectra and molecular structure (Vol. IV) (New York: Van Nostrand Reinhold) 342.

    [34]

    Moore C E 1971 Atomic energy levels (Washington(DC): National Bureau of Standards Publications).

  • [1] 樊景涛, 贾锁堂. 自旋-轨道耦合玻色凝聚体中的自旋频谱动力学响应. 物理学报, doi: 10.7498/aps.74.20241783
    [2] 刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮. 含自旋-轨道耦合的$ {{\bf{O}}}_{2}^{ - } $光谱常数计算. 物理学报, doi: 10.7498/aps.74.20241435
    [3] 邢伟, 李胜周, 孙金锋, 曹旭, 朱遵略, 李文涛, 李悦毅, 白春旭. AlH分子10个Λ-S态和26个Ω态光谱性质的理论研究. 物理学报, doi: 10.7498/aps.72.20230615
    [4] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, doi: 10.7498/aps.71.20220697
    [5] 周永香, 薛迅. 自旋-轨道耦合系统的电子涡旋. 物理学报, doi: 10.7498/aps.71.20220751
    [6] 邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋. BH分子8个Λ-S态和23个Ω态光谱性质的理论研究. 物理学报, doi: 10.7498/aps.71.20220038
    [7] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, doi: 10.7498/aps.70.20210450
    [8] 滑亚文, 刘以良, 万明杰. SeH+离子低激发态的电子结构和跃迁性质的理论研究. 物理学报, doi: 10.7498/aps.69.20200278
    [9] 邢伟, 孙金锋, 施德恒, 朱遵略. icMRCI+Q理论研究BF+离子电子态的光谱性质和预解离机理. 物理学报, doi: 10.7498/aps.67.20172114
    [10] 赵书涛, 梁桂颖, 李瑞, 李奇楠, 张志国, 闫冰. ZnH分子激发态的电子结构和跃迁性质的理论计算. 物理学报, doi: 10.7498/aps.66.063103
    [11] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. icMRCI+Q理论研究CF+离子12个-S态和23个态的光谱性质. 物理学报, doi: 10.7498/aps.65.033102
    [12] 刘华兵, 袁丽, 李秋梅, 谌晓洪, 杜泉, 金蓉, 陈雪连, 王玲. 6Li32S双原子分子的光谱和辐射跃迁理论研究. 物理学报, doi: 10.7498/aps.65.033101
    [13] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. BCl分子X1Σ+, a3Π和A1Π态的光谱性质. 物理学报, doi: 10.7498/aps.63.123102
    [14] 王文宝, 于坤, 张晓美, 刘玉芳. 从头计算研究BP分子的势能曲线和光谱性质. 物理学报, doi: 10.7498/aps.63.073302
    [15] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, doi: 10.7498/aps.62.100306
    [16] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, doi: 10.7498/aps.62.043101
    [17] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, doi: 10.7498/aps.60.043102
    [18] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, doi: 10.7498/aps.60.063101
    [19] 张丽艳, 田颖, 张军杰, 胡丽丽. LiF及AlF3对掺Tm3+氟磷玻璃光学、光谱性质、析晶性能及结构的影响. 物理学报, doi: 10.7498/aps.59.8205
    [20] 贺黎明, 杨 樾, 陆 慧. 原子实极化效应和钠原子s系列高Rydberg态能级寿命的计算. 物理学报, doi: 10.7498/aps.52.1385
计量
  • 文章访问数:  58
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-04

/

返回文章
返回