搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋-轨道耦合玻色凝聚体中的自旋频谱动力学响应

樊景涛 贾锁堂

引用本文:
Citation:

自旋-轨道耦合玻色凝聚体中的自旋频谱动力学响应

樊景涛, 贾锁堂

Dynamical response of spin frequency spectrum in spin-orbit coupled Bose-Einstein condensate

FAN Jingtao, JIA Suotang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于自旋-轨道耦合玻色凝聚体, 提出了一种凝聚体的自旋频谱对外场调控参数的动力学响应效应. 该效应由对凝聚体的快速晃动和外加的迅变塞曼场来驱动. 研究发现, 自旋频谱的谱峰对外场驱动参数呈现出简单的线性关系. 通过对模型作适当近似和简化, 本文给出了该线性关系的解析关系式. 同时, 基于Gross-Pitaevskii方程对系统的动力学演化做了数值计算, 数值结果与解析表达式符合得很好. 另外, 本文还进一步探究了自旋频谱对外场驱动响应的物理本质, 发现该效应来源于不同自旋-轨道态之间的量子干涉, 可以利用量子多臂干涉仪的图像来理解其内涵. 文章的最后对方案的实验可行性及相关参数进行了讨论与估计. 本文的结果在量子控制和量子计量学等领域有潜在价值.
    Dynamical characteristics of internal and external states of a Bose-Einstein condensate are generally different and independent, thus requiring different experimental manipulation techniques. The spin-orbit coupling recently achieved in Bose-Einstein condensates essentially connects spin and motion degree of freedom, endowing spin states with the ability to respond to orbital manipulation, and vice versa. In this work, a dynamical response effect, induced by simultaneously manipulating the internal and external states of a spin-orbit-coupled Bose-Einstein condensate, is predicted. Here, the “simultaneously manipulating the internal and external states” means that the driving field combines the Zeeman field applied to the internal state of the atom and the orbital potential affecting the external states of the atom. Specifically, the Bose-Einstein condensate is assumed to be activated by an abruptly applied Zeeman field and a sudden shake of the trapping potential. After some reasonable simplification and approximation of the model (i.e. neglecting the inter-atomic interactions and modelling the shake of the trapping potential by a short time-dependent pulse), an analytical relationship connecting spin frequency spectrum and the parameters of the driving fields is derived. The numerical calculations based on directly integrating the Gross-Pitaevskii equation are in good agreement with the results from the analytical relationship. The physical origin of the predicted spin dynamical response can be traced back to the quantum interference among different spin-orbit states. Due to the fact that a series of characteristic parameters of the condensate can be manifested in the spin frequency spectrum, the dynamical response effect predicted here provides a candidate method for determining and calibrating various system parameters by measuring the spin frequency spectrum.
  • 图 1  (a)产生自旋-轨道耦合BEC的实验示意图; (b)原子的能级结构以及激光诱导的跃迁

    Fig. 1.  (a) Schematic illustration of the experimental setup to generate spin-orbit coupled BEC; (b) the atomic level structure and their transitions.

    图 2  $ \left\langle {{\sigma _x}(t)} \right\rangle $在不同驱动参数下以$ \left| {\varPsi (0)} \right\rangle = \left( {\left| {{\chi _ + }(0)} \right\rangle \left| + \right\rangle + \left| {{\chi _ - }(0)} \right\rangle \left| - \right\rangle } \right)/\sqrt 2 $为初态随时间的演化, 其他参数固定为$ \alpha = 0.2\sqrt {\hbar \omega /m} , $$ \tau = 0.01/\omega , \;\;\varOmega = 0 $.

    Fig. 2.  Time evolution of $ \left\langle {{\sigma _x}(t)} \right\rangle $ under the initial state $ \left| {\varPsi (0)} \right\rangle = \left( {\left| {{\chi _ + }(0)} \right\rangle \left| + \right\rangle + \left| {{\chi _ - }(0)} \right\rangle \left| - \right\rangle } \right)/\sqrt 2 $ for different driving parameters. The other parameters are set by $ \alpha = 0.2\sqrt {\hbar \omega /m} , \, \, \tau = 0.01/\omega , \;\;\varOmega = 0 $.

    图 3  固定其余参数, 变化$ \zeta $(上图)和变化$ {\eta _0} $(下图)时自旋频谱$ \left| {{S_x}(\nu )} \right| $的取值, 其他参数固定为$ \alpha = 0.2\sqrt {\hbar \omega /m} $, $ \tau = 0.01/\omega $, $ {T_{\text{L}}} = 400/\omega $, $ \varOmega = 0 $, 初态选择为$ \left| {\varPsi (0)} \right\rangle = $$ \left( {\left| {{\chi _ + }(0)} \right\rangle \left| + \right\rangle + \left| {{\chi _ - }(0)} \right\rangle \left| - \right\rangle } \right)/\sqrt 2 $

    Fig. 3.  Spin frequency spectrum $ \left| {{S_x}(\nu )} \right| $ for varying $ \zeta $ (up panel) and $ {\eta _0} $ (bottom panel). The other parameters are set by $ \alpha = 0.2\sqrt {\hbar \omega /m} $, $ \tau = 0.01/\omega $, $ {T_{\text{L}}} = 400/\omega $, and $ \varOmega = $$ 0 $. The initial state is chosen as $ \left| {\varPsi (0)} \right\rangle = ( \left| {{\chi _ + }(0)} \right\rangle \left| + \right\rangle + $$ \left| {{\chi _ - }(0)} \right\rangle \left| - \right\rangle )/\sqrt 2 $.

    图 4  自旋频谱$ \left| {{S_x}(\nu )} \right| $在(a) $ \zeta {\text{ - }}\nu $和(b) $ {\eta _0}{\text{ - }}\nu $ 平面上的取值 (a) $ {\eta _0} = 0.2\omega $; (b) $ \zeta = 100\sqrt {\hbar /\left( {{\text{π}}m\omega } \right)} $; 其他参数以及初态选择与图3一致

    Fig. 4.  Spin frequency spectrum $ \left| {{S_x}(\nu )} \right| $ in the (a) $ \zeta {\text{ - }}\nu $ plane and the (b) $ {\eta _0}{\text{ - }}\nu $ plane: (a) $ {\eta _0} = 0.2\omega $; (b) $ \zeta = $$ 100\sqrt {\hbar /\left( {{\text{π}}m\omega } \right)} $. The other parameters and the initial state are the same as those in Fig.3.

    图 5  多自旋-轨道态量子干涉的示意图, 动力学调控图像与量子干涉图像具有对应关系, 图中不同颜色的模块表示干涉过程的不同组成部分

    Fig. 5.  Schematic description of the multiple spin-orbit-states interference. The dynamical control image corresponds to the quantum interference image, where different colored modules in the diagram represent different components of the interference process.

    图 6  $ \varOmega = 0 $(蓝色实线)和$ \varOmega = 0.15\omega $(黑色虚线)时自旋频谱$ \left| {{S_x}(\nu )} \right| $的取值, 驱动参数固定为$ \zeta = 100\sqrt {\hbar /({\text{π}}m\omega )} , $$ \eta = 0 $, 其他参数以及初态选择与图3一致

    Fig. 6.  Spin frequency spectrum $ \left| {{S_x}(\nu )} \right| $ for $ \varOmega = 0 $ (blue solid curve) and $ \varOmega = 0.15\omega $ (green dashed curve). The driving parameters are set by $ \zeta = 100\sqrt {\hbar /({\text{π}}m\omega )} , \;\eta = 0 $. The other parameters and the initial state are the same as those in Fig.3.

    图 7  自旋频谱$ \left| {{S_x}(\nu )} \right| $在$ \nu = \tilde \nu = 0.38\omega $处随驱动参数(a) $ \zeta $和(b) $ {\eta _0} $的变化, 其他参数以及初态选择与图3一致

    Fig. 7.  Value of spin frequency spectrum $ \left| {{S_x}(\nu )} \right| $ at $ \nu = \tilde \nu = 0.38\omega $ as a function of (a) $ \zeta $ and (b) $ {\eta _0} $. The other parameters and the initial state are the same as those in Fig.3.

    图 8  $ \left| {{S_x}(\nu )} \right| $对于不同脉冲宽度$ \tau $的取值 (a1)—(c1)对应于(3)式描述的高斯型脉冲; (a2)—(c2)对应于(21)式描述的方波型脉冲; $ \zeta = 100\sqrt {\hbar /\left( {\varGamma m\omega } \right)} $, 其中$ \varGamma = \sqrt {\text{π}} $对应于高斯型脉冲, $ \varGamma = 1 $对应于方波型脉冲, 其他参数以及初态选择与图3一致

    Fig. 8.  Value of spin frequency spectrum $ \left| {{S_x}(\nu )} \right| $ for different $ \tau $: (a1)–(c1) correspond to the Gaussian pulse defined in Eq.(3); (a1)–(c1) correspond to the square pulse defined in Eq.(21). In these figures, $ \zeta = 100\sqrt {\hbar /\left( {\varGamma m\omega } \right)} $ , where $ \varGamma = \sqrt {\text{π}} $ for the Gaussian pulse and $ \varGamma = 1 $ for the square pulse. The other parameters and the initial state are the same as those in Fig.3.

    图 9  (a) $ \left| {{S_x}(\nu )} \right| $在不同积分时间$ T $下的取值; (b)图(a)中两个谱峰$ {\nu _1} $和$ {\nu _2} $的半高宽度随积分时间$ T $的变化; (c)图(a)中两个谱峰$ {\nu _1} $和$ {\nu _2} $的峰值位置随积分时间$ T $的变化; 所有图中$ \zeta = 250\sqrt {\hbar /\left( {{\text{π}}m\omega } \right)} $, $ {\eta _0}/\omega = 0 $, 其他参数以及初态选择与图3一致

    Fig. 9.  (a) Value of spin frequency spectrum $ \left| {{S_x}(\nu )} \right| $ for different $ T $; (b) the half-height width of the spectrum peak $ {\nu _1} $ and $ {\nu _2} $ appearing in panel (a) as functions of $ T $; (c) the peak position of $ {\nu _1} $ and $ {\nu _2} $ appearing in panel (a) as functions of $ T $. In these figures, $ \zeta = 250\sqrt {\hbar /\left( {{\text{π}}m\omega } \right)} $ and $ {\eta _0}/\omega = 0 $. The other parameters and the initial state are the same as those in Fig.3.

    图 10  (a)相互作用$ g $不同时, 自旋频谱$ \left| {{S_x}(\nu )} \right| $的取值; (b)自旋频谱$ \left| {{S_x}(\nu )} \right| $在$ \nu = \tilde \nu = \omega $处随驱动参数$ \zeta $的变化, 不同相互作用$ g $用不同线型表示;其他参数以及初态选择与图3一致

    Fig. 10.  (a) Value of spin frequency spectrum $ \left| {{S_x}(\nu )} \right| $ for different interaction coefficient $ g $; (b) the value of spin frequency spectrum $ \left| {{S_x}(\nu )} \right| $ at $ \nu = \tilde \nu = \omega $ as a function of $ \zeta $, and the results of different $ g $ are labelled by different linetypes. The other parameters and the initial state are the same as those in Fig.3.

  • [1]

    Chu S 1998 Rev. Mod. Phys. 70 685Google Scholar

    [2]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [3]

    Dalibard J, Gerbier F, Juzeliūnas G, Öhberg P 2011 Rev. Mod. Phys. 83 1523Google Scholar

    [4]

    Qiu X Z, Zoller P, Li X P 2020 PRX Quantum 1 020311Google Scholar

    [5]

    Jayaseelan M, Manikandan S K, Jordan A N, Bigelow N P 2021 Nat. Commun. 12 1847Google Scholar

    [6]

    Kaufman A M, Ni K K 2021 Nat. Phys. 17 1324Google Scholar

    [7]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969Google Scholar

    [8]

    Anderson M H, Ensher J R, Matthewa M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [9]

    Pitaevskii L, Stringari S 2016 Bose-Einstein Condensation and Superfluidity (Oxford University Press

    [10]

    Jie J W, Guan Q, Blume D 2019 Phys. Rev. A 100 043606Google Scholar

    [11]

    Jie J W, Guan Q, Zhong S, Schwettmann A, Blume D 2020 Phys. Rev. A 102 023324Google Scholar

    [12]

    Jie J W, Zhong S, Zhang Q, Morgenstern I, Ooi H G, Guan Q, Bhagat A, Nematollahi D, Schwettmann A, and Blume D 2023 Phys. Rev. A 107 053309Google Scholar

    [13]

    Huang Y X, Zhang Y B, Lu R, Wang X G, Yi S 2012 Phys. Rev. A 86 043625Google Scholar

    [14]

    Xing H, Wang A, Tan Q S, Zhang W, Yi S 2016 Phys. Rev. A 93 043615Google Scholar

    [15]

    Lewenstein M, Sanpera A, Ahufinger V 2012 Ultracold Atoms in Optical Lattices (Oxford University Press

    [16]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83Google Scholar

    [17]

    Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403Google Scholar

    [18]

    Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401Google Scholar

    [19]

    Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402Google Scholar

    [20]

    Pan J S, Zhang W, Yi W, Guo G C 2016 Phys. Rev. A 94 043619Google Scholar

    [21]

    Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A O, and Ketterle W 2017 Nature 543 91Google Scholar

    [22]

    Liao R Y 2018 Phys. Rev. Lett. 120 140403Google Scholar

    [23]

    Campbell D L, Price R M, Putra A, Valdés-Curiel A, Trypogeorgos D, Spielman I B 2016 Nat. Commun. 7 10897Google Scholar

    [24]

    Vaishnav J Y, Clark C W 2008 Phys. Rev. Lett. 100 153002Google Scholar

    [25]

    Zhang Y P, Mao L, Zhang C W 2012 Phys. Rev. Lett. 108 035302Google Scholar

    [26]

    Zhang Y P, Chen G, Zhang C W 2013 Sci. Rep. 3 1937Google Scholar

    [27]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [28]

    Qu C L, Hamner C, Gong M, Zhang C W, Engels P 2013 Phys. Rev. A 88 021604(R

    [29]

    Hamner C, Qu C, Zhang Y, Chang J, Gong M, Zhang C, Engels P 2014 Nat. Commun. 5 4023Google Scholar

    [30]

    Khamehchi M A, Hossain K, Mossman M E, Zhang Y, Busch T, Forbes M M, Engels P 2017 Phys. Rev. Lett. 118 155301Google Scholar

    [31]

    Wu C H, Fan J T, Chen J, Jia S T 2019 Phys. Rev. A 99 013617Google Scholar

    [32]

    Fan G, Chen X L, Zou P 2022 Front. Phys. 17 52502Google Scholar

    [33]

    Bednarek S, Szumniak P, Szafran B 2010 Phys. Rev. B 82 235319Google Scholar

    [34]

    Pawlowski J, Szumniak P, Skubis A, Bednarek S 2014 J. Phys. : Condens. Matter 26 345302Google Scholar

    [35]

    Golovach V N, Borhani M, Loss D 2006 Phys. Rev. B 74 165319Google Scholar

    [36]

    Li R, You J Q, Sun C P, Nori F 2013 Phys. Rev. Lett. 111 086805Google Scholar

    [37]

    Widera A, Gerbier F, Fölling S, Gericke T, Mandel O, Bloch I 2006 New. J. Phys. 8 152Google Scholar

    [38]

    Ho T L 1998 Phys. Rev. Lett. 81 742Google Scholar

    [39]

    Grossmann F 2008 Theoretical Femtosecond Physics: Atoms and Molecules in Strong Laser Fields (Springer Berlin Heidelberg

    [40]

    Baudon J, Mathevet R, Robert J 1999 J. Phys. B: At. Mol. Opt. Phys. 32 R173Google Scholar

    [41]

    Shevchenko S N, Ashhab S, Nori F 2010 Phys. Rep. 492 1Google Scholar

    [42]

    Li Y Q, Feng G S, Xu R D, Wang X F, Wu J Z, Chen G, Dai X C, Ma J, Xiao L T, Jia S T 2015 Phys. Rev. A 91 053604Google Scholar

  • [1] 白龙, 张荣, 张雷. 含自旋-轨道耦合作用的金属-双量子点-超导体混合型系统的热电输运研究. 物理学报, doi: 10.7498/aps.74.20241756
    [2] 王欢, 贺夏瑶, 李帅, 刘博. 非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学. 物理学报, doi: 10.7498/aps.72.20222401
    [3] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解. 物理学报, doi: 10.7498/aps.72.20222319
    [4] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质. 物理学报, doi: 10.7498/aps.72.20231076
    [5] 袁家望, 陈立, 张云波. 自旋-轨道耦合玻色爱因斯坦凝聚中多能级绝热消除理论. 物理学报, doi: 10.7498/aps.72.20231052
    [6] 周永香, 薛迅. 自旋-轨道耦合系统的电子涡旋. 物理学报, doi: 10.7498/aps.71.20220751
    [7] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, doi: 10.7498/aps.71.20220697
    [8] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态. 物理学报, doi: 10.7498/aps.69.20200372
    [9] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, doi: 10.7498/aps.68.20182013
    [10] 李吉, 刘伍明. 梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究. 物理学报, doi: 10.7498/aps.67.20180539
    [11] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度. 物理学报, doi: 10.7498/aps.66.220301
    [12] 贺丽, 余增强. 自旋-轨道耦合作用下双组分量子气体中的动力学结构因子与求和规则. 物理学报, doi: 10.7498/aps.65.131101
    [13] 黄珍, 曾文, 古艺, 刘利, 周鲁, 张卫平. 自旋-轨道耦合下冷原子的双反射. 物理学报, doi: 10.7498/aps.65.164201
    [14] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿. 物理学报, doi: 10.7498/aps.63.110306
    [15] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, doi: 10.7498/aps.62.100306
    [16] 王建忠, 曹辉, 豆福全. 玻色-爱因斯坦凝聚体Rosen-Zener跃迁中的多体量子涨落效应. 物理学报, doi: 10.7498/aps.61.220305
    [17] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌. 物理学报, doi: 10.7498/aps.60.120302
    [18] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩. 物理学报, doi: 10.7498/aps.58.3679
    [19] 李菊萍, 谭 磊, 臧小飞, 杨 科. 偶极旋量玻色-爱因斯坦凝聚体在外场中的自旋混合动力学. 物理学报, doi: 10.7498/aps.57.7467
    [20] 王冠芳, 刘 红. 扫描磁场中玻色-爱因斯坦凝聚体系的奇异自旋隧穿. 物理学报, doi: 10.7498/aps.57.667
计量
  • 文章访问数:  243
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-26
  • 修回日期:  2025-03-05
  • 上网日期:  2025-03-12

/

返回文章
返回