搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向后摩尔Ge-CMOS制造的超薄high-k LaLuO3栅介质工艺研究

唐晓雨 刘玉杰 花涛

引用本文:
Citation:

面向后摩尔Ge-CMOS制造的超薄high-k LaLuO3栅介质工艺研究

唐晓雨, 刘玉杰, 花涛

Demonstration of ultra-thin high-k LaLuO3 gate dielectric for Ge-CMOS manufacture in More Moore application

TANG Xiaoyu, LIU Yujie, HUA Tao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • IV族元素锗材料由于具有电子和空穴迁移率高、禁带宽度小、与硅工艺相兼容等优势, 在低功耗高迁移率场效应晶体管领域具有广泛的应用潜力, 相应的Ge基金属-氧化物-半导体场效应晶体管(MOSFET)技术成为延续摩尔(more Moore)和超越摩尔(more than Moore)技术领域的前沿研究热点 . 面向高迁移率的Ge基晶体管制备, 高质量栅极氧化物工艺是关键. 而高介电常数的Ge基栅极氧化物可以在提高栅控能力的同时, 有效降低器件栅极漏电, 提升器件的性能. 稀土系氧化物LaLuO3介电常数较高, 并且晶化温度高, 是制备Ge基MOSFET栅介质的优选方案. 本文通过磁控溅射技术制备Ge基氧化物LaLuO3介质, 并系统研究了退火工艺的气体种类、压强等氛围条件对Ge MOS栅电容特性的影响, 揭示了常压氧气氛围退火可以改善器件栅电容迟滞现象, 但存在栅界面层厚度增大的问题; 通过进一步发展基于高压低氧含量(0.1% O2)气体氛围退火技术, 在修复LaLuO3/Ge界面缺陷并减少氧空位产生的同时, 实现了极低的等效氧化层厚度(1.8 nm), 相应的LaLuO3/Ge MOS结构电容-电压曲线迟滞仅为 40 mV, 为Ge MOSFET提供了高性能LaLuO3/Ge栅极工艺方案.
    Germanium material holds great potential applications in low-power, high-mobility field-effect transistors because of their advantages of high electron and hole mobility, narrow bandgap, and compatibility with silicon CMOS technologies. The development of high-quality gate oxide processes is crucial in fabricating high-mobility Ge-based transistors, especially those with high dielectric constant for superior gate control and preferable gate stability. Rare-earth oxides represented by LaLuO3 have high dielectric constants and high crystallization temperatures, making them potential candidates for Ge-based MOSFET gate technology. In this work, a germanium (Ge)-based oxide dielectric LaLuO3 is fabricated utilizing a p-type Ge substrate with a (111) crystal orientation and a doping concentration of 1×1016 cm–3, and radio-frequency (RF) co-sputtering 2-inch 99.9% La2O3 and Lu2O3 targets. Systematical investigations are conducted to evaluate the effects of annealing process conditions on the characteristics of the LaLuO3/Ge MOS gate structure under three specifically designed annealing atmospheres, i.e. nitrogen, oxygen, and a nitrogen-oxygen mixed gas with an N2:O2 ratio of 0.999∶0.001. Meanwhile, the influence of annealing pressure is also explored. The results show that annealing in pure oxygen at atmospheric pressure can reduce the hysteresis of gate capacitance, but it can lead to the formation of interface layers. Correspondingly, annealing technique based on high-pressure and low-oxygen-content (0.1% O2) atmosphere is developed, which not only improves the LaLuO3/Ge interface quality and suppresses the oxygen vacancy generation, but also achieves an extremely low equivalent oxide thickness (EOT) of 1.8 nm and a hysteresis voltage of only 40 mV, resulting in an ideal LaLuO3/Ge MOS structure. This work thus provides a high-performance LaLuO3/Ge gate process solution for Ge MOSFETs.
  • 图 1  Au/LaLuO3/Ge/Al MOS电容制备工艺流程和器件结构示意图

    Fig. 1.  Fabrication process and device structure of Au/LaLuO3/Ge/Al MOS capacitor.

    图 2  共溅射生成的30 nm LaLuO3薄膜的XPS测试数据与拟合峰

    Fig. 2.  XPS data and fitting peak curves for 30 nm LaLuO3 film by co-sputtering.

    图 3  10 nm LaLuO3/Ge MOS 电容在不同环境下退火的电容-电压曲线(退火温度为600 ℃, 时间是30 s, 测试频率为 1 kHz—1 MHz) (a)氮气氛围; (b)氧气氛围; (c)低氧含量气体氛围

    Fig. 3.  The C-V curves of 10 nm LaLuO3/Ge MOS capacitors under different annealing atmosphere: (a) N2; (b) O2; (c) N2+0.1% O2. The annealing temperature is 600 ℃ and time is 30 s, with frequency changing from 1 kHz to 1 MHz.

    图 4  不同气体氛围下退火的LaLuO3/Ge MOS电容在1 MHz测试频率下的(a)电容-电压曲线和(b)迟滞电压

    Fig. 4.  The (a) C-V curves and (b) hysteresis values of LaLuO3/Ge MOS capacitors under different annealing atmospheres at frequency of 1 MHz

    图 5  采用两步退火处理后的LaLuO3/Ge MOS电容的CV曲线, 第1步为600 ℃下氮气退火30 s , 第2步为氧气退火, 温度分别为 (a) 500 ℃; (b) 400 ℃

    Fig. 5.  The C-V curves of LaLuO3/Ge MOS capacitors under two-stage annealing procedure, the first step is annealing in N2 ambient for 30 s at 600 ℃ and the second step is annealing in O2 ambient at (a) 500 ℃ and (b) 400 ℃.

    图 6  4 nm LaLuO3/Ge MOS 电容在不同环境下退火的电容-电压曲线, 测试频率为 1 MHz

    Fig. 6.  The C-V curves of 4 nm LaLuO3/Ge MOS capacitors under different annealing atmosphere at measuring frequency of 1 MHz.

    图 7  不同环境下退火的LaLuO3/Ge MOS 电容的 (a) CET和迟滞, 以及(b)界面态密度Dit计算结果

    Fig. 7.  (a) CET and hysteresis and (b) Dit at Fermi level of LaLuO3/Ge MOS capacitors under different annealing atmosphere.

    图 8  采用高压低氧含量(0.1%)气体退火后的4 nm LaLuO3/Ge MOS的电容-电压曲线

    Fig. 8.  The C-V characteristics of 4 nm LaLuO3/Ge MOS capacitors under high pressure N2+0.1%O2 mixture ambient.

  • [1]

    Del Alamo J A 2011 Nature 479 317Google Scholar

    [2]

    赵毅, 李骏康, 郑泽杰 2019 物理学报 68 167301Google Scholar

    Zhao Y, Li J K, Zheng Z J 2019 Acta Phys. Sin. 68 167301Google Scholar

    [3]

    Wang S W, Guo H X, Ma T, Lei Z F, Ma W Y, Zhong X L, Zhang H, Lu X J, Li J F, Fang J L, Zeng T X 2024 Acta Phys. Sin. 73 238501 [王颂文, 郭红霞, 马腾, 雷志锋, 马武英, 钟向丽, 张鸿, 卢小杰, 李济芳, 方俊霖, 曾天祥 2024 物理学报 73 238501]Google Scholar

    Wang S W, Guo H X, Ma T, Lei Z F, Ma W Y, Zhong X L, Zhang H, Lu X J, Li J F, Fang J L, Zeng T X 2024 Acta Phys. Sin. 73 238501Google Scholar

    [4]

    Shao Y J, Zhou J, Xu N, Chen J, Watanabe K, Taniguchi T, Shi Y, Li S L 2023 Chin. Phys. Lett. 40 068501Google Scholar

    [5]

    Yan N, Xiong Z R, Qin C B, Li X X 2024 Chin. Phys. Lett. 41 028101Google Scholar

    [6]

    Wang C, Wen P, Peng C, Xu M, Chen L L, Li X F, Zhang J H 2023 Acta Phys. Sin. 72 087302 [王琛, 温盼, 彭聪, 徐萌, 陈龙龙, 李喜峰, 张建华 2024 物理学报 72 087302]

    Wang C, Wen P, Peng C, Xu M, Chen L L, Li X F, Zhang J H 2023 Acta Phys. Sin. 72 087302

    [7]

    Wu H, Wu W, Si M, Peide D Y 2015 IEEE International Electron Devices Meeting (IEDM) Washington DC USA, December 7−9, 2015 p2.1. 1

    [8]

    Yu B, Chang L, Ahmed S, Wang H, Bell S, Yang C Y, Tabery C, Ho C, Xiang Q, King T J, Bokor J, Hu C, Lin M R, Kyser D 2002 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, December 8−11, 2015 p10.2. 1

    [9]

    Cao L, Liu H 2012 Acta Phys. Sin. 61 247303 [曹磊, 刘红侠 2012 物理学报 61 247303]Google Scholar

    Cao L, Liu H 2012 Acta Phys. Sin. 61 247303Google Scholar

    [10]

    Kim J H, Kim S, Park B G 2019 IEEE Trans. Elec. Dev. 66 1656Google Scholar

    [11]

    Chen J D, Han W H, Yang C, Zhao X S, Guo Y Y, Zhang X D, Yang F H 2020 Acta Phys. Sin. 69 137701 [陈俊东, 韩伟华, 杨冲, 赵晓松, 郭仰岩, 张晓迪, 杨富华 2020 物理学报 69 137701]Google Scholar

    Chen J D, Han W H, Yang C, Zhao X S, Guo Y Y, Zhang X D, Yang F H 2020 Acta Phys. Sin. 69 137701Google Scholar

    [12]

    Liu C, Wang X Z, Shen C, Ma L P, Yang X Q, Kong Y, Ma W, Liang Y, Feng S, Wang X Y, Wei Y N, Zhu X, Li B, Li C Z, Dong S C, Zhang L N, Ren W C, Sun D M, Cheng H M 2024 Nature 632 782Google Scholar

    [13]

    Wei W J, Lü W F, Han Y, Zhang C Y, Chen D K 2023 Chin. Phys. B 32 097301Google Scholar

    [14]

    Takagi S, Zhang R, Suh J, Kim S H, Yokoyama M, Nishi K, Takenaka M 2015 Jpn. J. Appl. Phys. 54 06FA01Google Scholar

    [15]

    Kamata Y 2008 Mater. Today 11 30

    [16]

    Zhang R, Huang P C, Lin J C, Taoka N, Takenaka M, Takagi S 2013 IEEE Trans. Elec. Dev. 60 927Google Scholar

    [17]

    Nakaharai S, Tezuka T, Sugiyama N, Moriyama Y, Takagi S 2003 Appl. Phys. Lett. 83 3516Google Scholar

    [18]

    Chen C W, Tzeng J Y, Chung C T, Chien H P, Chien C H, Luo G L 2014 IEEE Trans. Elec. Dev. 61 2656

    [19]

    Zhang R, Tang X, Yu X, Li J, Zhao Y 2016 IEEE Elec. Dev. Lett. 37 831Google Scholar

    [20]

    Murad S A, Baine P T, McNeill D W, Mitchell S J N, Armstrong B M, Modreanu M, Hughes G, Chellappan R K 2012 Solid-state Electrons. 78 136Google Scholar

    [21]

    Lee C H, Nishimura T, Nagashio K, Kita K, Toriumi A 2011 IEEE Trans. Elec. Dev. 58 1295Google Scholar

    [22]

    Xie M, Nishimura T, Yajima T, Toriumi A 2020 J. Appl. Phys. 127 024101Google Scholar

    [23]

    Wang S K, Kita K, Nishimura T, Nagashio K, Toriumi A 2011 Jpn. J. Appl. Phys. 50 04DA01Google Scholar

    [24]

    Ogawa S, Suda T, Yamamoto T, Kutsuki K, Hideshima I, Hosoi T, Shimura T, Watanabe H 2011 Appl. Phys. Lett. 99 142101Google Scholar

    [25]

    Roeckerath M, Heeg T, Lopes J M J, Schubert J, Mantl S, Besmehn A, Myllymӓki P, Niinistö L 2008 Thin Solid Films 517 201Google Scholar

    [26]

    Goh K H, Haseeb A S M A, Wong Y H 2017 Mater. Sci. Semicon. Proc. 68 302Google Scholar

    [27]

    Gu J J, Liu Y Q, Xu M, Celler G K, Gordon R G, Ye P D 2010 Appl. Phys. Lett. 97 012106Google Scholar

    [28]

    Özben E D, Lopes J M J, Nichau A, Schnee M, Lenk S, Besmehn A, Bourdelle K K, Zhao Q T, Schubert J, Mantl S 2010 IEEE Elec. Dev. Lett. 32 15

    [29]

    Yu W J, Zhang B, Liu C, Xue Z Y, Chen M, Zhao Q T 2014 Chin. Phys. Lett. 31 016101Google Scholar

    [30]

    Xiong K, Robertson 2009 Microelectron. Eng. 86 1672Google Scholar

    [31]

    Radtke C, Krug C, Soares G V, Baumvol I J R, Lopes J M J, Durgun-Ozben E, Nichau A, Schubert J, Mantl S 2010 Electrochem. Solid-State Lett. 13 G37Google Scholar

    [32]

    Tabata T, Lee C H, Kita K, Toriumi A 2008 ECS Trans. 16 479Google Scholar

    [33]

    Lee C H, Tabata T, Nishimura T, Nagashio K, Toriumi A 2012 Appl. Phys. Lett. 5 114001

  • [1] 万法琦, 马艳平, 董丹丹, 丁万昱, 姜宏, 董闯, 贺建雄. 氧化物玻璃中的类分子结构单元. 物理学报, doi: 10.7498/aps.69.20191892
    [2] 范敏敏, 徐静平, 刘璐, 白玉蓉, 黄勇. 高k栅介质GeOI金属氧化物半导体场效应管阈值电压和亚阈斜率模型及其器件结构设计. 物理学报, doi: 10.7498/aps.63.087301
    [3] 沈应龙, 唐春梅, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平. 铈铕共掺高钆氧化物玻璃的发光性能及能量传递效应. 物理学报, doi: 10.7498/aps.62.117803
    [4] 朱剑云, 刘璐, 李育强, 徐静平. 退火工艺对LaTiON和HfLaON存储层金属-氧化物-氮化物-氧化物-硅存储器特性的影响. 物理学报, doi: 10.7498/aps.62.038501
    [5] 杨一鸣, 王甲富, 屈绍波, 柏鹏, 李哲, 夏颂, 王军, 徐卓. 基于高介电常数基板和金属结构负折射材料的设计,仿真与验证. 物理学报, doi: 10.7498/aps.60.054103
    [6] 张睿, 羊亚平. 负介电常数材料和负磁导率材料的双层结构中电磁波模式分析. 物理学报, doi: 10.7498/aps.59.2451
    [7] 陈军, 蒙大桥, 杜际广, 蒋刚, 高涛, 朱正和. 钚氧化物的分子结构和分子光谱研究. 物理学报, doi: 10.7498/aps.59.1658
    [8] 罗晓婧, 杨昌平, 宋学平, 徐玲芳. 巨介电常数氧化物CaCu3Ti4O12的介电和阻抗特性. 物理学报, doi: 10.7498/aps.59.3516
    [9] 曹卫强, 邓书康, 唐新峰, 李鹏. 熔体旋甩工艺对Zn掺杂Ⅰ-型Ba8Ga12Zn2Ge32笼合物微结构及热电性能的影响. 物理学报, doi: 10.7498/aps.58.612
    [10] 许军, 黄宇健, 丁士进, 张卫. Ta和TaN底电极对原子层淀积HfO2介质MIM电性能的影响. 物理学报, doi: 10.7498/aps.58.3433
    [11] 吴 群, 孟繁义, 傅佳辉, 李乐伟. 基于双负介质与负介电常数介质交叠结构的谐振腔研究. 物理学报, doi: 10.7498/aps.57.2179
    [12] 董丽娟, 江海涛, 杨成全, 石云龙. 负介电常数材料与负磁导率材料双层结构的透射特性. 物理学报, doi: 10.7498/aps.56.4657
    [13] 刘亚红, 罗春荣, 赵晓鹏. 同时实现介电常数和磁导率为负的H型结构单元左手材料. 物理学报, doi: 10.7498/aps.56.5883
    [14] 赵 毅, 万星拱. 0.18μm CMOS工艺栅极氧化膜可靠性的衬底和工艺依存性. 物理学报, doi: 10.7498/aps.55.3003
    [15] 孟 婕, 赵丽娟, 余 华, 唐莉勤, 梁 沁, 禹宣伊, 唐柏权, 苏 静, 许京军. 微晶结构对氟氧化物玻璃陶瓷发光特性的影响. 物理学报, doi: 10.7498/aps.54.1442
    [16] 俞笑竹, 王婷婷, 叶 超, 宁兆元. 掺CH4的SiCOH低介电常数薄膜结构与介电性能研究. 物理学报, doi: 10.7498/aps.54.5417
    [17] 王婷婷, 叶 超, 宁兆元, 程珊华. SiCOH低介电常数薄膜的性质和键结构分析. 物理学报, doi: 10.7498/aps.54.892
    [18] 连贵君, 李美亚, 康晋峰, 郭建东, 孙云峰, 熊光成. 钙钛矿结构氧化物薄膜 的外延生长. 物理学报, doi: 10.7498/aps.48.1917
    [19] 张凤英, 黄孙利, 曹效文. 高Tc氧化物YBa2Cu3Oy超导体中的磁通蠕动. 物理学报, doi: 10.7498/aps.39.830
    [20] 吴全德, 李建平, 董引吾. 氧化铯薄膜的光学特性和介电常数. 物理学报, doi: 10.7498/aps.36.101
计量
  • 文章访问数:  259
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-26
  • 修回日期:  2025-02-22
  • 上网日期:  2025-03-12

/

返回文章
返回